

Cryptography Algorithms
Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained in
this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing, and its dealers and distributors will be held
liable for any damages caused or alleged to be caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate use
of capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

Early Access Publication: Cryptography Algorithms

Early Access Production Reference: B21272

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK

ISBN: 978-1-83508-003-0

www.packt.com

https://www.packt.com

Table of Contents
1. Cryptography Algorithms, Second Edition: Build new algorithms in

encryption, blockchain, quantum, zero-knowledge, and homomorphic
algorithms

2. 1 Deep Dive into Cryptography
I. Join our book community on Discord

II. An introduction to cryptography
i. Binary numbers, ASCII code, and notations
ii. Fermat's Last Theorem, prime numbers, and modular

mathematics
III. A brief history and a panoramic overview of cryptographic

algorithms
i. Rosetta Stone
ii. Caesar Cipher

iii. ROT13
iv. The Beale cipher
v. The Vernam cipher

IV. Notes on security and computation
V. Summary

3. 2 Symmetric Encryption Algorithms
I. Join our book community on Discord

II. Notations and operations in Boolean logic
III. DES algorithms

i. Simple DES
ii. DES

iii. Triple DES
iv. DESX

IV. AES Rijndael
i. Description of AES
ii. Attacks and vulnerabilities in AES

V. Summary
4. 3 Asymmetric Encryption

I. Join our book community on Discord
II. Introduction to asymmetric encryption

i. The pioneers
III. The Diffie-Hellman algorithm

i. The discrete logarithm
ii. Explaining the D-H algorithm

iii. Analyzing the algorithm
iv. Possible attacks and cryptanalysis on the D-H algorithm

IV. RSA
i. Explaining RSA
ii. Analyzing RSA

iii. Conventional attacks on the algorithm
iv. The application of RSA to verify international treaties
v. Unconventional attacks

V. PGP
VI. The ElGamal algorithm

VII. Summary
5. 4 Hash Functions and Digital Signature

I. Join our book community on Discord
II. A basic explanation of hash functions

III. Overview of the main hash algorithms
i. Logic and notations to implement hash functions
ii. Explanation of the SHA-1 algorithm

iii. Notes and example on SHA-1
IV. Authentication and digital signatures

i. RSA digital signatures
ii. Digital signatures with the ElGamal algorithm

iii. Blind signatures
V. Summary

6. 5 Introduction to The “spooky math”. Zero-Knowledge Protocols. and
Attacks

I. Join our book community on Discord
II. The main scenario of a ZKP – the digital cave

i. Non-interactive ZKPs
ii. Schnorr's interactive ZKP

iii. An introduction to zk-SNARKs – spooky moon math
iv. How to use Zk-SNARKs in Zcash cryptocurrency in a nutshell
v. One-round ZKP

vi. A new Algorithm proposed by the Author: ZK13 – a ZKP for

authentication and key exchange
III. Summary

7. 7 Elliptic Curves
I. Join our book community on Discord

II. An overview of elliptic curves
III. Operations on elliptic curves

i. Scalar multiplication
IV. Implementing the D-H algorithm on elliptic curves
V. Elliptic curve secp256k1 – the Bitcoin digital signature

i. Step 1 – Generating keys
ii. Step 2 – Performing the digital signature in secp256k1

iii. Step 3 – Verifying the digital signature
VI. A numerical exercise on a digital signature on secp256k1

VII. Attacks on EDCSA and the security of elliptic curves
i. Step 1 – Discovering the random key, [k]
ii. Step 2 – Recovering the private key, [d]

VIII. Considerations about the future of ECC
IX. Summary

Cryptography Algorithms, Second
Edition: Build new algorithms in
encryption, blockchain, quantum,
zero-knowledge, and
homomorphic algorithms
Welcome to Packt Early Access. We’re giving you an exclusive preview of
this book before it goes on sale. It can take many months to write a book, but
our authors have cutting-edge information to share with you today. Early
Access gives you an insight into the latest developments by making chapter
drafts available. The chapters may be a little rough around the edges right
now, but our authors will update them over time.You can dip in and out
of this book or follow along from start to finish; Early Access is designed to
be flexible. We hope you enjoy getting to know more about the process of
writing a Packt book.

1. Chapter 1: Deep Dive into Cryptography
2. Chapter 2: Symmetric Encryption Algorithms
3. Chapter 3: Asymmetric Encryption
4. Chapter 4: Hash Functions and Digital Signature
5. Chapter 5: Zero Knowledge Protocols
6. Chapter 6: New Algorithms in Public/Private Key Cryptography by the

Author
7. Chapter 7: Elliptic Curves
8. Chapter 8: Lightweight Encryption
9. Chapter 9: Crypto Search Engine

10. Chapter 10: Quantum Cryptography
11. Chapter 11: New methods of Attacks on Encryotion and Zero

Knowledge

1 Deep Dive into Cryptography

Join our book community on Discord
https://packt.link/SecNet

This chapter provides an introduction to cryptography, what it is needed for,
and why it is so important in IT. This chapter also gives a panoramic view of
the principal algorithms from the history of cryptography, from the Caesar
algorithm to the Vernam cipher and other lesser-known algorithms, such as
the Beale cipher. Then, Rivest-Shamir-Adleman (RSA), Diffie–Hellman,
and other famous algorithms will be described in detail in the proceeding part
of this book. Finally, this chapter will give you the instruments to learn
cryptography and the pillars of security conservation.In this chapter, we will
cover the following topics:

A brief introduction to cryptography
Basic definitions and principal mathematical notations used in the book
Binary conversion and ASCII code
Fermat Last's Theorem, prime numbers, and modular mathematics
The history of the principal cryptographic algorithms and an explanation
of some of them (Rosetta cipher, Caesar, ROT13, Beale, Vernam)
Security notation (semantic, provable, OTP, and so on)

An introduction to cryptography
One of the most important things in cryptography is to understand definitions

https://packt.link/SecNet

and notations. I have never been a fan of definitions and notations, first of all,
because I am the only one to use notations that I've invented. But I realize
that it is very important, especially when we are talking about something
related to mathematics, to agree among ourselves. Thus, in this section, I will
introduce basic information and citations relating to cryptography.We start
with a definition of an algorithm.In mathematics and computer science, an
algorithm is a finite sequence of well-defined computer-implementable
instructions.An important question is: what is a cipher?A cipher is a system
of any type able to transform plaintext (a message) into not-intelligible text (a
ciphertext or cryptogram):

Figure 1.1 – Encryption process

To get some utility from a cipher, we have to set up two operations:
encryption and decryption. In simpler terms, we have to keep the message
secret and safe for a certain period of time.We define M as the set of all the
messages and C as the set of all the cryptograms.Encryption is an operation
that transforms a generic message, m, into a cryptogram, c, applying a
function, E: m ------- > f(E) --------- > c Decryption is an operation
that returns the message in cleartext, m, from the cryptogram, c, applying a
function, D: C ------- > f(D) --------- > m Mathematically, D(E(M))=
M.This means that the E and D functions are the inverse of each other, and
the E function has to be injective. Injective means different M values have to
correspond to different C values.Note that it doesn't matter whether I use
capital letters or lowercase, such as (M) or (m); it's inconsequential at the
moment. For the moment, I have used round brackets indiscriminately, but
later I will use square brackets to distinguish secret elements of a function
from known ones, for which I will use square brackets. So, the secret
message M will be written as [M], just like any other secret parameter. Here,
just showing how the algorithms work is within our scope; we'll leave their
implementation to engineers.There is another important notation that is key to
encryption/decryption. To encrypt and decrypt a message, it is necessary to
set up a key. In cryptography, a key is a parameter that determines the
functional output of a cryptographic algorithm or cipher. Without a key, the
algorithm would produce no useful results.We define K as the set of all the
keys used to encrypt and decrypt M, and k as the single encryption or
decryption key, also called the session key. However, these two ways to
define a key (a set of keys is K and a single key is k) will always be used,
specifying what kind of key it is (private or public).Now that we understand
the main concepts of cryptographic notation, it is time to explain the
difference between private and public keys:

In cryptography, a private or secret key (Kpr), denoted as [K] or [k], is
an encryption/decryption parameter known only to one, both, or multiple
parties in order to exchange secret messages.
In cryptography, a public key (Kpu) or (K) is an encryption key known
by everyone who wants to send a secret message or authenticate a user.

So, what is the main difference between private and public keys?The
difference is that a private key is used both to encrypt and/or decrypt a
message, while a public key is used only to encrypt a message and verify the
identity (digital signatures) of humans and computers. This is a substantial
and very important issue because it determines the difference between
symmetric and asymmetric encryption. Let's give a generic definition of these
two methods of encryption:

Symmetric encryption uses only one shared key to both encrypt and
decrypt the message.
Asymmetric encryption implements more parameters to generate a
public key (to encrypt the message) and just one private key to decrypt
the message.

As we will see later on, private keys are used in symmetric encryption to
encrypt/decrypt the message with the same key and in asymmetric encryption
in a general way for decryption, whereas public keys are used only in
asymmetric encryption to encrypt the message and to perform digital
signatures. You will see the function of these two types of keys later, but for
now, keep in mind that a private key is used both in symmetric and
asymmetric encryption, while a public key is used only for asymmetric
encryption. Note that it's not my intention to discuss academic definitions and
notation, so please try to figure out the scope and the use of each
element.One of the main problems in cryptography is the transmission of the
key, or the key exchange. This problem resulted in strong diatribes in the
community of mathematicians and cryptographers because it was very hard
to determine how to transmit a key while avoiding physically exchanging it.
For example, if Alice and Bob wanted to exchange a key (before the advent
of asymmetric encryption), the only trusted way to do that was to meet
physically in one place. This condition caused a lot of problems with the
massive adoption of telecommunication systems and the internet. The first
problem was that internet communication relies on data exchange over unsafe
channels. As you can easily understand, if Alice communicates with Bob
through an insecure public communication channel, the private key has a
severe possibility of being compromised, which is extremely dangerous for
the security and privacy of communications.For this reason, this question
arises: if we use a symmetric cipher to protect our secret information, how

can we securely exchange the secret key?A simple answer is the following:
we have to provide a secure channel of communication to exchange the
key.Someone could then reply: how do we provide a secure channel?We will
find the answer, or rather multiple answers, later on in this book. Even in
tough military applications, such as the legendary red line between the
leaders of the US and USSR during the Cold War, symmetric communication
keys were used; nowadays, it is common to use asymmetric encryption to
exchange a key. Once the key has been exchanged, the next communication
session is combined with symmetric encryption to encrypt the messages
transmitted.For many reasons, asymmetric encryption is a good way to
exchange a key and is good for authentication and digital signatures.
Computationally, symmetric encryption is better because it can work with
lower bit-length keys, saving a lot of bandwidth and timing. So, in general, its
algorithms work efficiently for security using keys of 256-512 bits compared
to the 4,000+ bits of asymmetric RSA encryption, for example. I will explain
in detail why and how that is possible later during the analysis of the
algorithms in asymmetric/symmetric encryption.While in this book I will
analyze many kinds of cryptographic techniques, essentially, we can group
all the algorithms into two big families: symmetric and asymmetric
encryption.We need some more definitions to understand cryptography well:

Plaintext: In cryptography, this indicates unencrypted text, or
everything that could be exposed in public. For example, (meet you
tomorrow at 10 am) is plaintext.
Ciphertext: In cryptography, this indicates the result of the text after
having performed the encryption procedure. For example, meet you
tomorrow at 10 am could become [x549559*ehebibcm3494] in
ciphertext.

As I mentioned before, I use different brackets to identify plaintext and
ciphertext. In particular, these brackets (…) identify plaintext, while square
brackets […] identify ciphertext.

Binary numbers, ASCII code, and notations

When we manipulate data with computers, it is common to use data as strings
of 0 and 1 named bits. So, numbers can be converted into bits (base 2) rather

than into base 10, like our numeric system. Let's just have a look at how the
conversion mechanism works. For example, the number (123) can be written
in base 10 as 1*10^2+2*10^1 +3*10^0.Likewise, we can convert a base 10
number to a base 2 number. In this case, we use the example of the number
29:

Figure 1.2 – Conversion of the number 29 into base 2 (bits)

The remainder of a division is very popular in cryptography because
modular mathematics is based on the concept of remainders. We will go
deeper into this topic in the next section, when I explain prime numbers and
modular mathematics.To transform letters into a binary system to be encoded
by computers, the American Standards Association invented the ASCII code
in 1960.From the ASCII website, we have the following definition:"ASCII

stands for American Standard Code for Information Interchange. It's a 7-bit
character code where every single bit represents a unique character."The
following is an example of an ASCII code table with the first 10 characters:

Figure 1.3 – The first 10 characters and symbols expressed in ASCII code

Note that I will often use in my implementations, made with the Wolfram
Mathematica research software, the character 88 as X to denote the message
number to encrypt. In ASCII code, the number 88 corresponds to the symbol
X, as you can see in the following
example: 88 130 58 01011000 X X Uppercase X You can go to the
Appendix section at the end of the book to find all the notation used in this
book both for the algorithms and their implementation with Mathematica
code.

Fermat's Last Theorem, prime numbers, and modular
mathematics

When we talk about cryptography, we have to always keep in mind that this
subject is essentially related to mathematics and logic. Before I start

explaining Fermat's Last Theorem, I want to introduce some basic notation
that will be used throughout the book to prevent confusion and for a better
understanding of the topic. It's important to know that some symbols, such as
=, ≡ (equivalent), and := (this last one you can find in Mathematica to
compute =), will be used by me interchangeably. It's just a way to tell you
that two elements correspond to each other in equal measure; it doesn't matter
whether it is in a finite field (don't worry, you will become familiar with this
terminology), computer science, or in regular algebra. Mathematicians may
be horrified by this, but I trust your intelligence and that you will look for the
substance and not for the uniformity.Another symbol, ≈ (approximate), can
be used to denote similar approximative elements.You will also encounter the
^ (exponent) symbol in cases such as in a classical way to express
exponentiation: ax (a elevated to x), for example. The ≠ symbol, as you
should remember from high school, means not equal or unequal, which is
the same as the meaning of =, that is, not equivalent.However, you will
always get an explanation of the equations, so if you are not very familiar
with mathematical and logical notation, you can rely on the descriptions.
Anyway, I will explain each case as we come across new notation. A prime
number is an integer that can only be divided by itself and 1, for example, 2,
3, 5, 7….23….67……p.Prime numbers are the cornerstones of mathematics
because all other composite numbers originate from them.Now, let's see what
Fermat's Last Theorem is, where it is applied, and why it is useful for
us.Fermat's Last Theorem is one of the best and most beautiful theorems of
classical mathematics strictly related to prime numbers. According to
Wikipedia, "In number theory, Fermat's Last Theorem (sometimes called
Fermat's conjecture, especially in older texts) states that no three positive
integers a, b, and c satisfy the equation a^n + b^n = c^n for any integer value
of n greater than 2. The cases n = 1 and n = 2 have been known since
antiquity to have infinitely many solutions."In other words, it tells us that
given the following equation, for any exponent, n>3, ≥ 3 there is no integer,
a, b, or c, that verifies the sum: a^n+b^n = c^n Why is this theorem so
important for us? Firstly, it's because Fermat's Last Theorem is strictly related
to prime numbers. In fact, given the properties of primes, in order to
demonstrate Fermat's Last Theorem, it's sufficient to demonstrate the
following: a^p+b^p ≠ c^p Here, p is any prime number greater than 2.Fermat
stated he had a proof that was too large to fit in the margin of his
notes.Fermat himself noted in a paper that he had a beautiful demonstration

of the problem, but it has never been found.Wiles' proof is more than 200
pages long was more than 200 pages long, reduced to about 130 in the last
version and is immensely difficult to understand. The proof is based on
elliptic curves: these curves take a particular form when they are represented
in a modular form. Wiles arrived at his conclusion after 7 years and explained
his proof at a mathematicians' congress in 1994. I will explain the You will
discover proof and part of the logic used in the Wile’s proof when you will
read Chapter 7, Elliptic Curves. Right now, we just assume that to
demonstrate Fermat's Last Theorem, Wiles needed to rely on the Taniyama
Shimura conjecture, which states that elliptic curves over the field of rational
numbers are related to modular forms. Again, don't worry if this seems too
complicated; eventually, as we progress, it will start making sense.We will
deeply analyze Fermat's Last Theorem in Chapter 6, New Algorithms in
Public/Private Key Cryptography, when I introduce the MB09 algorithm
based on Fermat's Last Theorem, among other innovative algorithms in
public/private keys. Moreover, we will analyze the elliptic curves applied in
cryptography in Chapter 7, Elliptic Curves.Fermat was obsessed with prime
numbers, just like many other mathematicians; he searched for prime
numbers and their properties throughout his life. He tried to attempt to find a
general formula to represent all the primes in the universe, but unluckily,
Fermat, just like many other mathematicians, only managed to construct a
formula for some of them. The following is Fermat's prime numbers formula:
2^2n + 1 for some positive integer n If we substitute n with integers,
we can obtain some prime numbers:
n = 1, p = 5n = 2, p = 17n = 3, p = 65 (not prime)n = 4, p = 257 Probably
more famous but very similar is the Mersenne prime numbers
formula: 2^n - 1 for some positive integer nn = 1, p=1n = 2, p=3n = 3, p=7n = 4, p=15 (not prime)n = 5, p=31
countless attempts to find a formula that exclusively represents all prime
numbers, nobody has reached this goal as yet.Great Internet Mersenne
Prime Search (GIMPS) is a research project that aims to discover the
newest and biggest prime numbers with Mersenne's formula.If you explore
the GIMPS website, you can discover the following: All exponents below 53
423 543 have been tested and verified.All exponents below 92 111 363 have
been tested at least once.51st Known Mersenne Prime Found!December 21,
2018 — The Great Internet Mersenne Prime Search (GIMPS) has discovered
the largest known prime number, 2^82,589,933-1, having 24,862,048 digits.
A computer volunteered by Patrick Laroche from Ocala, Florida made the

find on December 7, 2018. The new prime number, also known as
M82589933, is calculated by multiplying together 82,589,933 twos and then
subtracting one. It is more than one and a half million digits larger than the
previous record prime number.Besides that, GIMPS is probably the first
decentralized example of how to split CPU and computer power to reach a
common goal. But why all this interest in finding big primes?There are at
least three answers to this question: the passion for pure research, the money
– because there are several prizes for those who find big primes – and finally,
because prime numbers are important for cryptography, just like oxygen is
for humans. This is also the reason why there is prize money for discovering
big prime numbers.You will understand that most algorithms of the next
generation work with prime numbers. But how do you discover whether a
number is prime?In mathematics, there is a substantial computation
difference between the operation of multiplication and division. Division is a
lot more computationally expensive than multiplication. This means, for
instance, that if I compute 2^x, where x is a huge number, it is easy to
operate the power elevation but is extremely difficult to find the divisors of
that number.Because of this, mathematicians such as Fermat struggled to find
algorithms to make this computation easier.In the field of prime numbers,
Fermat produced another very interesting theorem, known as Fermat's Last
Theorem Fermat’s Little Theorem. Before explaining this theorem, it is
time to understand what modular arithmetics is and how to compute with
it.The simplest way to learn modular arithmetics is to think of a clock. When
we say: "Hey, we can meet at 1 p.m." actually we calculate that 1 is the first
hour after 12 (the clock finishes its circular wrap).So, we can say that we are
unconsciously calculating in modulus 12 written by the notation (mod 12),
where integers wrap around when reaching a certain value (in this case 12),
called the modulus.Technically, the result of a calculation with a modulus
consists of the remainder of the division between the number and the
modulus.For example, in our clock, we have the
following: 13 ≡ 1 (mod 12) This means that 13 is congruent to 1 in
modulus 12. You can consider congruent to mean equal. In other words, we
can say that the remainder of the division of 13:12 is 1:

Figure 1.4 – Example of modular arithmetic with a clock

Fermat's Last Theorem Fermat’s Little Theorem states that if (p) is a prime
number, then for any integer (a) elevated to the prime number (p) we find (a)
as the result of the following equation: a^p ≡ a (mod p) For example, if a =
2 and p = 3, then 2^3 = 2 (mod 3). In other terms, we find the rest of the
division 8 : 3 = 2 with remainder 2. Fermat's Last Theorem Fermat’s Little
Theorem is the basis of the Fermat primality test and is one of the

fundamental parts of elementary number theory.Fermat's Last Theorem
Fermat’s Little Theorem states that a number, p, is probably prime in the
following instance: a^p ≡ a (mod p) Now that we have refreshed our
knowledge on the operations of bit conversion, we have seen what ASCII
code looks like, and we have explored the basic notation of mathematics and
logic, we can start our journey into cryptography.

A brief history and a panoramic overview of
cryptographic algorithms
Nobody probably knows which cryptogram was the first to be invented.
Cryptography has been used for a long time, approximately 4,000 years, and
it has changed its paradigms a lot. First, it was a kind of hidden language,
then cryptography was based on a transposition of letters in a mechanical
fashion, then finally, mathematics and logic were used to solve complicated
problems. What will the future hold? Probably, new methods will be invented
to hide our secrets: quantum cryptography, for example, is already being
experimented with and will come soon. I will explain new algorithms and
methods throughout this book, but let me use this section to show you some
interesting ciphers related to the classical period. Despite the computation
power we have now, some of these algorithms have not yet been broken.

Rosetta Stone

One of the first extraordinary examples of cryptography was hieroglyphics.
Cryptography means hidden words and comes from the union of two Greek
words: κρυπτός (crypto) and γράφω (graphy). Among the many definitions of
this word, we find the following: converting ordinary plaintext into
unintelligible text and vice versa. So, we can include hieroglyphics in this
definition, because we discovered how to re-convert their hidden meaning
into intelligible text only after the Rosetta Stone was found. As you will
probably remember from elementary school, the Rosetta Stone was written in
three different languages: Ancient Egyptian (using hieroglyphics), Demotic,
and Ancient Greek. The Rosetta Stone could only be decrypted because
Ancient Greek was well known at the time:

Figure 1.5 – Rosetta Stone with the three languages detected

Hieroglyphics were a form of communication between the people of a
country. Jean-François Champollion has been recognized as the man who
deciphered Rosetta Stone beginning in 1822. However, the polymath Thomas
Young has been accredited by Egyptologists as the first person to publish a
partially correct translation of the Rosetta Stone. We will encounter again
Thomas Young in Chapter 11/12, discussing Quantum Cryptography. Young
was the first to discover the effects of the dualism between waves and
particles related to the photons, which is very important for Quantum
mechanics. The same problem of deciphering an unknown language could
occur in the future if and when we get in contact with an alien population. 20
giu 2007 A project called SETI (https://www.seti.org/) focuses on this:
"From microbes to alien intelligence, the SETI Institute is America's only
organization wholly dedicated to searching for life in the universe." Maybe if
one day we get in contact with alien creatures, we will eventually understand
their language. You can imagine that hieroglyphics (at the time) appeared as
impenetrable as an alien language for someone who had never encountered
this form of communication.

Caesar Cipher

Continuing our journey through history, we find that during the Roman
Empire, cryptography was used to transmit messages from the generals to the
commanders and to soldiers. In fact, we find the famous Caesar Cipher.
Why is this encrypting method so famous in the history of cryptography?This
is not only because it was used by Caesar, who was one of the most valorous
Roman statesmen/generals, but also because this method was probably the
first that implemented mathematics.This cipher is widely known as a shift
cipher. The technique of shifting is very simple: just shift each letter you
want to encrypt a fixed number of places in the alphabet so that the final
effect will be to obtain a substitution of each letter for another one. So, for
example, if I decide to shift by three letters, then A will become D, E
becomes H, and so on.For example, in this case, by shifting each letter three
places, implicitly we have created a secret cryptographic key of [K=3]:

https://www.seti.org/

Figure 1.6 – The transposition of the letters in the Caesar Cipher during the
encryption and decryption processes

It is obviously a symmetric key encryption method. In this case, the
algorithm works in the following way:

Use this key: (+3).
Message: HELLO.
To encrypt: Take every letter and shift by +3 steps.
To decrypt: Take every letter and de-shift by -3.

You can see in the following figure how the process of encryption and
decryption of the Caesar algorithm works using key = +3; as you'll notice, the
word HELLO becomes KHOOR after encryption, and then it returns to
HELLO after decryption:

Figure 1.7 – Encryption and decryption using Caesar's algorithm

As you can imagine, the Caesar algorithm is very easy to break with a normal
computer if we set a fixed key, as in the preceding example. The scheme is
very simple, which, for a cryptographic algorithm, is not a problem.
However, the main problem is the extreme linearity of the underlying
mathematics. Using a brute-force method, that is, a test that tries all the
combinations to discover the key after having guessed the algorithm used (in
this case, the shift cipher), we can easily break the code. We have to check at
most 25 combinations: all the letters of the English alphabet (26) minus one
(that is, the same intelligible plaintext form). This is nothing compared to the
billions and billions of attempts that a computer has to make in order to break
a modern cryptographic algorithm.However, there is a more complex version
of this algorithm that enormously increases the efficiency of the encryption.If
I change the key for each letter and I use that key to substitute the letters and
generate the ciphertext, then things become very interesting.Let's see what
happens if we encrypt HELLO using a method like this:

Write out the alphabet.
Choose a passphrase (also known as a keyphrase) such as

[JULIUSCAESAR] and repeat it, putting each letter of the alphabet in
correspondence with a character from the passphrase in the second row,
as shown in the following screenshot.
After we have defined the message to encrypt, for each character
composing the message (in the first row) select the corresponding
character of the keyphrase (in the second row).
Pick up the selected corresponding characters in the second row to
create the ciphertext.

Finding it a little bit complicated? Don't worry, the following example will
clarify everything.Let's encrypt HELLO with the keyphrase
[JULIUSCAESARJULIUS…]:

Figure 1.8 – Encrypting HELLO with a keyphrase becomes harder to attack

Thus, encrypting the plaintext HELLO using the alphabet and a key (or
better, a passphrase or a keyphrase), JULIUSCAESAR, repeated without
any spaces, we obtain the correspondent ciphertext: AURRL.So, H becomes
A, E becomes U, L becomes R (twice), and O becomes L.Earlier, we only
had to check 25 combinations to find the key in the Caesar cipher; here,
things have changed a little bit, and there are (26!) possibilities to discover
the key.! That means multiply 1*2*3...*26, which results in
403,291,461,126,605,635,584,000,000. This is undoubtedly a very big
number. In fact, it is about one-third of all the atoms in the universe.
Computationally, it is pretty hard to discover the key, even for a modern
computer using a brute-force method.Another advantage of building a
cryptogram like this is that it is easy to memorize the keyword or keyphrase
and hence work out the ciphertext. But let's see a cipher that is performed
with a similar technique and is used in commercial contexts.

ROT13

A modern example of an algorithm that is used on the internet is ROT13.
Essentially, this is a simple cipher derived from the Caesar cipher with a shift
of (+13). Computationally, it is easy to break the Caesar cipher, but it yields
an interesting effect: if we shift to the left or to the right, we will have the
same result.Just like the preceding example, in ROT13, we have to select
letters that correspond to the pre-selected key. Essentially, the difference here
is that instead of applying a keyphrase to perform the ciphertext, we will use
13 letters from the English alphabet as the key generator. ROT13 takes in
encryption only the letters that occur in the English alphabet and not
numbers, symbols, or other characters, which are left as they are. The ROT13
function essentially encrypts the plaintext with a key determined by the first
13 letters transposed into the second 13 letters, and the inverse for the second
13 letters.Take a look at the following example to better understand the
encryption scheme:

Figure 1.9 – The encryption scheme in ROT13

As you can see in the preceding diagram, H becomes U, E becomes R, L
becomes Y (twice), and O becomes B: HELLO = URYYB The key consists of
the first 13 letters of the alphabet up to M, which becomes Z, then the
sequence wraps back to N, which becomes A, O becomes B, and so on to Z,
which becomes M.ROT13 was used to hide potentially offensive jokes or
obscure an answer in the net.jokes newsgroup in the early 1980s.Also, even
though ROT13 is not intended to be used for a high degree of secrecy, it is
still used in some cases to hide email addresses from unsophisticated
spambots. ROT13 is also used for the scope of circumventing spam filters
such as obscuring email content. This last function is not recommended
because of the extreme vulnerability of this algorithm.However, ROT13 was
used by Netscape Communicator – the browser organization that released
https://www.mozilla.org – to store email passwords. Moreover, ROT13 is
used in Windows XP to hide some registry keys, so you can understand how
sometimes even big corporations can have a lack of security and privacy in
communications.

The Beale cipher

Going back to the history of cryptography, I would like to show you an
amazing method of encryption whose cipher has not been decrypted yet,
despite the immense computational power of our modern calculators. Very
often, cryptography is used to hide precious information or fascinating
treasure, just as in the mysterious story that lies behind the Beale cipher.In
order to better understand the method of encryption adopted in this cipher, I
think it is interesting to know the story (or legend) of Beale and his
treasure.The story involves buried treasure with a value of more than $20
million, a mysterious set of encrypted documents, Wild West cowboys, and a
hotel owner who dedicated his life to struggling with the decryption of these
papers. The whole story is contained in a pamphlet that was published in
1885.The story (you can find the whole version here:
http://www.unmuseum.org/bealepap.htm) begins in January 1820 in
Lynchburg, Virginia at the Washington Hotel where a man named Thomas J.
Beale checked in. The owner of the hotel, Robert Morriss, and Beale became
friends, and because Mr. Morriss was considered a trustworthy man, he
received a box containing three mysterious papers covered in numbers.After
countless troubles and many years of struggle, only the second of the three

https://www.mozilla.org
http://www.unmuseum.org/bealepap.htm

encrypted papers was deciphered.What exactly does Beale's cipher look like?
The following content consists of three pages, containing only numbers, in an
apparently random order.The first paper is as
follows: 71, 194, 38, 1701, 89, 76, 11, 83, 1629, 48, 94, 63, 132, 16, 111, 95, 84, 341, 975, 14, 40, 64, 27, 81, 139, 213, 63, 90, 1120, 8, 15, 3, 126, 2018, 40, 74, 758, 485, 604, 230, 436, 664, 582, 150, 251, 284, 308, 231, 124, 211, 486, 225, 401, 370, 11, 101, 305, 139, 189, 17, 33, 88, 208, 193, 145, 1, 94, 73, 416, 918, 263, 28, 500, 538, 356, 117, 136, 219, 27, 176, 130, 10, 460, 25, 485, 18, 436, 65, 84, 200, 283, 118, 320, 138, 36, 416, 280, 15, 71, 224, 961, 44, 16, 401, 39, 88, 61, 304, 12, 21, 24, 283, 134, 92, 63, 246, 486, 682, 7, 219, 184, 360, 780, 18, 64, 463, 474, 131, 160, 79, 73, 440, 95, 18, 64, 581, 34, 69, 128, 367, 460, 17, 81, 12, 103, 820, 62, 116, 97, 103, 862, 70, 60, 1317, 471, 540, 208, 121, 890, 346, 36, 150, 59, 568, 614, 13, 120, 63, 219, 812, 2160, 1780, 99, 35, 18, 21, 136, 872, 15, 28, 170, 88, 4, 30, 44, 112, 18, 147, 436, 195, 320, 37, 122, 113, 6, 140, 8, 120, 305, 42, 58, 461, 44, 106, 301, 13, 408, 680, 93, 86, 116, 530, 82, 568, 9, 102, 38, 416, 89, 71, 216, 728, 965, 818, 2, 38, 121, 195, 14, 326, 148, 234, 18, 55, 131, 234, 361, 824, 5, 81, 623, 48, 961, 19, 26, 33, 10, 1101, 365, 92, 88, 181, 275, 346, 201, 206, 86, 36, 219, 324, 829, 840, 64, 326, 19, 48, 122, 85, 216, 284, 919, 861, 326, 985, 233, 64, 68, 232, 431, 960, 50, 29, 81, 216, 321, 603, 14, 612, 81, 360, 36, 51, 62, 194, 78, 60, 200, 314, 676, 112, 4, 28, 18, 61, 136, 247, 819, 921, 1060, 464, 895, 10, 6, 66, 119, 38, 41, 49, 602, 423, 962, 302, 294, 875, 78, 14, 23, 111, 109, 62, 31, 501, 823, 216, 280, 34, 24, 150, 1000, 162, 286, 19, 21, 17, 340, 19, 242, 31, 86, 234, 140, 607, 115, 33, 191, 67, 104, 86, 52, 88, 16, 80, 121, 67, 95, 122, 216, 548, 96, 11, 201, 77, 364, 218, 65, 667, 890, 236, 154, 211, 10, 98, 34, 119, 56, 216, 119, 71, 218, 1164, 1496, 1817, 51, 39, 210, 36, 3, 19, 540, 232, 22, 141, 617, 84, 290, 80, 46, 207, 411, 150, 29, 38, 46, 172, 85, 194, 39, 261, 543, 897, 624, 18, 212, 416, 127, 931, 19, 4, 63, 96, 12, 101, 418, 16, 140, 230, 460, 538, 19, 27, 88, 612, 1431, 90, 716, 275, 74, 83, 11, 426, 89, 72, 84, 1300, 1706, 814, 221, 132, 40, 102, 34, 868, 975, 1101, 84, 16, 79, 23, 16, 81, 122, 324, 403, 912, 227, 936, 447, 55, 86, 34, 43, 212, 107, 96, 314, 264, 1065, 323, 428, 601, 203, 124, 95, 216, 814, 2906, 654, 820, 2, 301, 112, 176, 213, 71, 87, 96, 202, 35, 10, 2, 41, 17, 84, 221, 736, 820, 214, 11, 60, 760
second paper (which was decrypted) is as
follows: 115, 73, 24, 807, 37, 52, 49, 17, 31, 62, 647, 22, 7, 15, 140, 47, 29, 107, 79, 84, 56, 239, 10, 26, 811, 5, 196, 308, 85, 52, 160, 136, 59, 211, 36, 9, 46, 316, 554, 122, 106, 95, 53, 58, 2, 42, 7, 35, 122, 53, 31, 82, 77, 250, 196, 56, 96, 118, 71, 140, 287, 28, 353, 37, 1005, 65, 147, 807, 24, 3, 8, 12, 47, 43, 59, 807, 45, 316, 101, 41, 78, 154, 1005, 122, 138, 191, 16, 77, 49, 102, 57, 72, 34, 73, 85, 35, 371, 59, 196, 81, 92, 191, 106, 273, 60, 394, 620, 270, 220, 106, 388, 287, 63, 3, 6, 191, 122, 43, 234, 400, 106, 290, 314, 47, 48, 81, 96, 26, 115, 92, 158, 191, 110, 77, 85, 197, 46, 10, 113, 140, 353, 48, 120, 106, 2, 607, 61, 420, 811, 29, 125, 14, 20, 37, 105, 28, 248, 16, 159, 7, 35, 19, 301, 125, 110, 486, 287, 98, 117, 511, 62, 51, 220, 37, 113, 140, 807, 138, 540, 8, 44, 287, 388, 117, 18, 79, 344, 34, 20, 59, 511, 548, 107, 603, 220, 7, 66, 154, 41, 20, 50, 6, 575, 122, 154, 248, 110, 61, 52, 33, 30, 5, 38, 8, 14, 84, 57, 540, 217, 115, 71, 29, 84, 63, 43, 131, 29, 138, 47, 73, 239, 540, 52, 53, 79, 118, 51, 44, 63, 196, 12, 239, 112, 3, 49, 79, 353, 105, 56, 371, 557, 211, 505, 125, 360, 133, 143, 101, 15, 284, 540, 252, 14, 205, 140, 344, 26, 811, 138, 115, 48, 73, 34, 205, 316, 607, 63, 220, 7, 52, 150, 44, 52, 16, 40, 37, 158, 807, 37, 121, 12, 95, 10, 15, 35, 12, 131, 62, 115, 102, 807, 49, 53, 135, 138, 30, 31, 62, 67, 41, 85, 63, 10, 106, 807, 138, 8, 113, 20, 32, 33, 37, 353, 287, 140, 47, 85, 50, 37, 49, 47, 64, 6, 7, 71, 33, 4, 43, 47, 63, 1, 27, 600, 208, 230, 15, 191, 246, 85, 94, 511, 2, 270, 20, 39, 7, 33, 44, 22, 40, 7, 10, 3, 811, 106, 44, 486, 230, 353, 211, 200, 31, 10, 38, 140, 297, 61, 603, 320, 302, 666, 287, 2, 44, 33, 32, 511, 548, 10, 6, 250, 557, 246, 53, 37, 52, 83, 47, 320, 38, 33, 807, 7, 44, 30, 31, 250, 10, 15, 35, 106, 160, 113, 31, 102, 406, 230, 540, 320, 29, 66, 33, 101, 807, 138, 301, 316, 353, 320, 220, 37, 52, 28, 540, 320, 33, 8, 48, 107, 50, 811, 7, 2, 113, 73, 16, 125, 11, 110, 67, 102, 807, 33, 59, 81, 158, 38, 43, 581, 138, 19, 85, 400, 38, 43, 77, 14, 27, 8, 47, 138, 63, 140, 44, 35, 22, 177, 106, 250, 314, 217, 2, 10, 7, 1005, 4, 20, 25, 44, 48, 7, 26, 46, 110, 230, 807, 191, 34, 112, 147, 44, 110, 121, 125, 96, 41, 51, 50, 140, 56, 47, 152, 540, 63, 807, 28, 42, 250, 138, 582, 98, 643, 32, 107, 140, 112, 26, 85, 138, 540, 53, 20, 125, 371, 38, 36, 10, 52, 118, 136, 102, 420, 150, 112, 71, 14, 20, 7, 24, 18, 12, 807, 37, 67, 110, 62, 33, 21, 95, 220, 511, 102, 811, 30, 83, 84, 305, 620, 15, 2, 10, 8, 220, 106, 353, 105, 106, 60, 275, 72, 8, 50, 205, 185, 112, 125, 540, 65, 106, 807, 138, 96, 110, 16, 73, 33, 807, 150, 409, 400, 50, 154, 285, 96, 106, 316, 270, 205, 101, 811, 400, 8, 44, 37, 52, 40, 241, 34, 205, 38, 16, 46, 47, 85, 24, 44, 15, 64, 73, 138, 807, 85, 78, 110, 33, 420, 505, 53, 37, 38, 22, 31, 10, 110, 106, 101, 140, 15, 38, 3, 5, 44, 7, 98, 287, 135, 150, 96, 33, 84, 125, 807, 191, 96, 511, 118, 40, 370, 643, 466, 106, 41, 107, 603, 220, 275, 30, 150, 105, 49, 53, 287, 250, 208, 134, 7, 53, 12, 47, 85, 63, 138, 110, 21, 112, 140, 485, 486, 505, 14, 73, 84, 575, 1005, 150, 200, 16, 42, 5, 4, 25, 42, 8, 16, 811, 125, 160, 32, 205, 603, 807, 81, 96, 405, 41, 600, 136, 14, 20, 28, 26, 353, 302, 246, 8, 131, 160, 140, 84, 440, 42, 16, 811, 40, 67, 101, 102, 194, 138, 205, 51, 63, 241, 540, 122, 8, 10, 63, 140, 47, 48, 140, 288
third paper is as
follows: 317, 8, 92, 73, 112, 89, 67, 318, 28, 96,107, 41, 631, 78, 146, 397, 118, 98, 114, 246, 348, 116, 74, 88, 12, 65, 32, 14, 81, 19, 76, 121, 216, 85, 33, 66, 15, 108, 68, 77, 43, 24, 122, 96, 117, 36, 211, 301, 15, 44, 11, 46, 89, 18, 136, 68, 317, 28, 90, 82, 304, 71, 43, 221, 198, 176, 310, 319, 81, 99, 264, 380, 56, 37, 319, 2, 44, 53, 28, 44, 75, 98, 102, 37, 85, 107, 117, 64, 88, 136, 48, 151, 99, 175, 89, 315, 326, 78, 96, 214, 218, 311, 43, 89, 51, 90, 75, 128, 96, 33, 28, 103, 84, 65, 26, 41, 246, 84, 270, 98, 116, 32, 59, 74, 66, 69, 240, 15, 8, 121, 20, 77, 89, 31, 11, 106, 81, 191, 224, 328, 18, 75, 52, 82, 117, 201, 39, 23, 217, 27, 21, 84, 35, 54, 109, 128, 49, 77, 88, 1, 81, 217, 64, 55, 83, 116, 251, 269, 311, 96, 54, 32, 120, 18, 132, 102, 219, 211, 84, 150, 219, 275, 312, 64, 10, 106, 87, 75, 47, 21, 29, 37, 81, 44, 18, 126, 115, 132, 160, 181, 203, 76, 81, 299, 314, 337, 351, 96, 11, 28, 97, 318, 238, 106, 24, 93, 3, 19, 17, 26, 60, 73, 88, 14, 126, 138, 234, 286, 297, 321, 365, 264, 19, 22, 84, 56, 107, 98, 123, 111, 214, 136, 7, 33, 45, 40, 13, 28, 46, 42, 107, 196, 227, 344, 198, 203, 247, 116, 19, 8, 212, 230, 31, 6, 328, 65, 48, 52, 59, 41, 122, 33, 117, 11, 18, 25, 71, 36, 45, 83, 76, 89, 92, 31, 65, 70, 83, 96, 27, 33, 44, 50, 61, 24, 112, 136, 149, 176, 180, 194, 143, 171, 205, 296, 87, 12, 44, 51, 89, 98, 34, 41, 208, 173, 66, 9, 35, 16, 95, 8, 113, 175, 90, 56, 203, 19, 177, 183, 206, 157, 200, 218, 260, 291, 305, 618, 951, 320, 18, 124, 78, 65, 19, 32, 124, 48, 53, 57, 84, 96, 207, 244, 66, 82, 119, 71, 11, 86, 77, 213, 54, 82, 316, 245, 303, 86, 97, 106, 212, 18, 37, 15, 81, 89, 16, 7, 81, 39, 96, 14, 43, 216, 118, 29, 55, 109, 136, 172, 213, 64, 8, 227, 304, 611, 221, 364, 819, 375, 128, 296, 1, 18, 53, 76, 10, 15, 23, 19, 71, 84, 120, 134, 66, 73, 89, 96, 230, 48, 77, 26, 101, 127, 936, 218, 439, 178, 171, 61, 226, 313, 215, 102, 18, 167, 262, 114, 218, 66, 59, 48, 27, 19, 13, 82, 48, 162, 119, 34, 127, 139, 34, 128, 129, 74, 63, 120, 11, 54, 61, 73, 92, 180, 66, 75, 101, 124, 265, 89, 96, 126, 274, 896, 917, 434, 461, 235, 890, 312, 413, 328, 381, 96, 105, 217, 66, 118, 22, 77, 64, 42, 12, 7, 55, 24, 83, 67, 97, 109, 121, 135, 181, 203, 219, 228, 256, 21, 34, 77, 319, 374, 382, 675, 684, 717, 864, 203, 4, 18, 92, 16, 63, 82, 22, 46, 55, 69, 74, 112, 134, 186, 175, 119, 213, 416, 312, 343, 264, 119, 186, 218, 343, 417, 845, 951, 124, 209, 49, 617, 856, 924, 936, 72, 19, 28, 11, 35, 42, 40, 66, 85, 94, 112, 65, 82, 115, 119, 236, 244, 186, 172, 112, 85, 6, 56, 38, 44, 85, 72, 32, 47, 63, 96, 124, 217, 314, 319, 221, 644, 817, 821, 934, 922, 416, 975, 10, 22, 18, 46, 137, 181, 101, 39, 86, 103, 116, 138, 164, 212, 218, 296, 815, 380, 412, 460, 495, 675, 820, 952
second cipher was successfully decrypted around 1885. Here, I will discuss
the main considerations about this kind of cipher.Since the numbers in the
cipher far exceed the number of letters in the alphabet, we can assume that it
is not a substitution nor a transposition cipher. So, we can assume that each
number represents a letter, but this letter is obtained from a word contained in
an external text. A cipher following this criterion is called a book cipher: in
the case of a book cipher, a book or any other text could be used as a key.
Now, the effective key here is the method of obtaining the letters from the
text.Using this system, the second cipher was decrypted by drawing on the
United States Declaration of Independence. Assigning a number to each word
of the referring text (the United States Declaration of Independence) and
picking up the first letter of each word selected in the key (the list of the
numbers, in this case, referred to the second cipher), we can extrapolate the
plaintext. The extremely intelligent trick of this cipher is that the key text (the
United States Declaration of Independence) is public but at the same time it
was unknown to the entire world except for whom the message was intended.
Only when someone holds the key (the list of the numbers) and the "key text"
can they easily decrypt the message.Let's look at the process of decrypting
the second cipher:

Assign to each word of the text a number in order from the first to the
last word.
Extrapolate the first letter of each word using the numbers contained in
the cipher.
Read the plaintext.

The following is the first part of the United States Declaration of
Independence (until the 115th word) showing each word with its
corresponding

number: When(1) in(2) the(3) course(4) of(5) human(6) events(7) it(8) becomes(9) necessary(10) for(11) one(12) people(13) to(14) dissolve(15) the(16) political(17) bands(18) which(19) have(20) connected(21) them(22) with(23) another(24) and(25) to(26) assume(27) among(28) the(29) powers(30) of(31) the(32) earth(33) the(34) separate(35) and(36) equal(37) station(38) to(39) which(40) the(41) laws(42) of(43) nature(44) and(45) of(46) nature's(47) god(48) entitle(49) them(50) a(51) decent(52) respect(53) to(54) the(55) opinions(56) of(57) mankind(58) requires(59) that(60) they(61) should(62) declare(63) the(64) causes(65) which(66) impel(67) them(68) to(69) the(70) separation(71) we(72) hold(73) these(74) truths(75) to(76) be(77) self(78) evident(79) that(80) all(81) men(82) are(83) created(84) equal(85) that(86) they(87) are(88) endowed(89) by(90) their(91) creator(92) with(93) certain(94) unalienable(95) rights(96) that(97) among(98) these(99) are(100) life(101) liberty(102) and(103) the(104) pursuit(105) of(106) happiness(107) that(108) to(109) secure(110) these(111) rights(112) governments(113) are(114) instituted(115) ...
following numbers represent the first rows of the second cipher; as you can
see, the bold words (with their corresponding numbers) correspond to the
numbers we find in the
ciphertext: 115, 73, 24, 807, 37, 52, 49, 17, 31, 62, 647, 22, 7, 15, 140, 47, 29, 107, 79, 84, 56, 239, 10, 26, 811, 5, 196, 308, 85, 52, 160, 136, 59, 211, 36, 9, 46, 316, 554, 122, 106, 95, 53, 58, 2, 42, 7, 35...
following is the result of decryption using the cipher combined with the key
text (the United States Declaration of Independence), picking up the first
letter of each corresponding word, that is, the
plaintext: 115 = instituted = I73 = hold = h24 = another = a807 (missing) = v37 = equal = e52 = decent = d49 = entitle = e
so on… I haven't included the entire United States Declaration of
Independence; these are only the first 115 words. But if you want, you can
visit http://www.unmuseum.org/bealepap.htm and try the exercise to rebuild
the entire plaintext.Here (with some missing letters) is the reconstruction of
the first sentence: I have deposited in the county of Bedford……. If we
carry on and compare the numbers with the corresponding numbers of the
initial letters of the United States Declaration of Independence, the
decryption will be as follows:I have deposited in the county of Bedford, about
four miles from Buford's, in an excavation or vault, six feet below the surface
of the ground, the following articles, belonging jointly to the parties whose
names are given in number "3," herewith:The first deposit consisted of one
thousand and fourteen pounds of gold, and three thousand eight hundred and
twelve pounds of silver, deposited November, 1819. The second was made
December, 1821, and consisted of nineteen hundred and seven pounds of
gold, and twelve hundred and eighty-eight pounds of silver; also jewels,
obtained in St. Louis in exchange for silver to save transportation, and
valued at $13,000.The above is securely packed in iron pots, with iron
covers. The vault is roughly lined with stone, and the vessels rest on solid
stone, and are covered with others. Paper number "1" describes the exact
locality of the vault so that no difficulty will be had in finding it.Many other
cryptographers and cryptologists have tried to decrypt the first and third
Beale ciphers in vain. Others, such as the treasure hunter Mel Fisher, who
discovered hundreds of millions of dollars' worth of valuables under the sea,
went to Bedford to search the area in order to find the treasure, without
success.Maybe Beale's tale is just a legend. Or maybe it is true, but nobody
will ever know where the treasure is because nobody will decrypt the first
cipher. Or, the treasure will never be unearthed because someone has already
found it.Anyway, what is really interesting in this story is the implementation

http://www.unmuseum.org/bealepap.htm

of such a strong cipher without the help of any computers or electronic
machines; it was just made with brainpower, a pen, and a sheet of
paper.Paradoxically, the number of attempts required to crack the cipher go
from 1 to infinity assuming that the attacker works with brute force,
exploring all the texts written in the world at that moment. On top of that,
what happens if a key text is not public but was written by the transmitter
himself and has been kept secret? In this case, if the cryptologist doesn't have
the key (so doesn't hold the key text), the likelihood of them decrypting the
cipher is zero.The Beale cipher is also interesting because this kind of
algorithm could have new applications in modern cryptography or in the
future. Some of these applications could be related to methods of research for
encrypted data in cloud computing.

The Vernam cipher

The Vernam cipher has the highest degree of security for a cipher, as it is
theoretically completely secure. Since it uses a truly random key of the same
length as the plaintext, it is called the perfect cipher. It's just a matter of
entropy and randomness based on Shannon's principle of information entropy
that determines an equal probability of each bit contained in the ciphertext.
We will revisit this algorithm in Chapter 8, Quantum Cryptography, where
we talk about quantum key distribution and the related method to encrypt the
plaintext after determining the quantum key. Another interesting
implementation is Hyper Crypto Satellite, which uses this algorithm to
encrypt the plaintext crafted by a random key transmitted by a satellite
radiocommunication and expressed as an infinite string of bits.But for now,
let's go on to explore the main characteristics of this algorithm.The essential
element of the algorithm is using the key only once per session. This feature
makes the algorithm invulnerable to attacks against the ciphertext and even in
the unlikely event that the key is stolen, it would be changed at the time of
the next transmission.The method is very simple: by adding the key to the
message (mod 2) bit by bit, we will obtain the ciphertext. We will see this
method, called XOR, many times throughout this book, especially when we
discuss symmetric encryption in Chapter 2, Introduction to Symmetric
Encryption. Just remember that the key has to be of the same length as the
message.A numerical example is as follows:

00101001 (plaintext)
10101100 (key): Adding each bit (mod 2)
10000101 (ciphertext)

Step 1: Transform the plaintext into a string of bits using ASCII code.Step 2:
Generate a random key of the same length as the plaintext.Step 3: Encrypt by
adding modulo 2 (XOR) of the plaintext bitwise to the key and obtain the
ciphertext.Step 4: Decrypt by making the inverse operation of adding the
ciphertext to the key and obtain the plaintext again.To make an example with
numbers and letters, we will go back to HELLO. Let's assume that each
letter corresponds to a number, starting from 0 = A, 1 = B, 2 = C, 3 = D, 4 =
E … and so on until 25 = Z.The random key is [DGHBC].The encryption
will present the following transposition:

Figure 1.10 – Encryption scheme in the Vernam algorithm

So, after transposing the letters, the encryption of [HELLO] is
[KKSMQ].You can create an exercise by yourself to decrypt the [KKSMQ]
ciphertext using the inverse process: applying f(-K) to the ciphertext,
returning the HELLO plaintext. I would just like to remark that this

algorithm is very strong if well implemented, following all the warnings and
instructions to avoid a drastic reduction of security. One of the attacks that
many algorithms suffer is well known as a ciphertext-only attack. This is
successful if the attacker can deduce the plaintext, or even better the key,
using the ciphertext or pieces of it. The most common techniques are
frequency analysis and traffic analysis.This algorithm is not vulnerable to
ciphertext-only attacks. Moreover, if a piece of a key is known, it will be
possible to decipher only the piece corresponding to the related bits. The rest
of the ciphertext will be difficult to decrypt if it is long enough. However, the
conditions regarding the implementation of this algorithm are very restrictive
in order to obtain absolute invulnerability. First of all, the generation of the
key has to be completely random. Second, the key and the message have to
be of the same length, and third, there is always the problem of the key
transmission.This last problem affects all symmetric algorithms and is
basically the problem that pushed cryptographers to invent asymmetric
encryption to exchange keys between Alice and Bob (which we will see in
the next chapter).The second problem concerns the length of the key: if the
message is too short, for instance, the word ten, to indicate the time of a
military attack, the attacker could also rely on their good sense or on luck. It
doesn't matter if there is a random key for a short message. The message
could be decrypted intuitively if the attacker knows the topic of the
transmission. On the other hand, if the message is very long, we are forced to
use a very long key. In this case, the key will be very expensive to produce
and expensive to transmit. Moreover, considering that for every new
transmission the key has to be changed, the cost of implementing this cipher
for commercial purposes is very high.This is why, in general, mono-use
strings such as this were used for military purposes during the Second World
War and after. As I said before, this was the legendary algorithm used for the
red line between Washington and Moscow to encrypt communications
between the leaders of the US and the USSR during the Cold War.Finally, we
will analyze the implementation of this algorithm. It could be difficult to find
a way to generate and transmit a random key, even if the security of the
method is very high. In the last section of this book, I will show a new
method for the transmission and the implementation of keys using the
Vernam cipher combined with other algorithms and methods. This new one-
time pad (OTP) system, named Hyper Crypto Satellite, could be used for
both the authentication and the encryption of messages. I will also show you

the possible vulnerabilities of the system and how to generate a very random
key. The method was a candidate at the Satellite International Conference
on Space, but at the time I decided not to present it to the public.

Notes on security and computation
All the algorithms we have seen in this chapter are symmetric. The basic
problem that remains unsolved is the transmission of the key. As I've already
said, this problem will be overcome by the asymmetric cryptography that we
will explore in the next chapter. In this section, we will analyze the
computational problem related to the security of cryptographic algorithms
generally speaking. Later in the book, we will focus on the security of any
algorithm we will analyze.To make a similitude, we can say that in
cryptography the weak link of the chain destroys the entire chain. That is the
same problem as using a very strong cryptographic algorithm to protect the
data but leaving its password on the computer screen. In other words, a
cryptographic algorithm has to be made of a similar grade of security with
respect to mathematical problems. To clarify this concept with an example:
factorization and discrete logarithm problems hold similar computational
characteristics for now; however, if tomorrow one of these problems were
solved, then an algorithm that is based on both would be unuseful.Let's go
deeper to analyze some of the principles universally recognized in
cryptography. The first statement is Cryptography has to be open
source.With the term open source, I am referring to the algorithm and not,
obviously, to the key. In other words, we have to rely on Kerckhoffs'
principle, which states the following: "A cryptosystem should be secure even
if everything about the system, except the key, is public
knowledge.Kerckhoffs' principle applies beyond codes and ciphers to security
systems in general: every secret creates a potential failure point. Secrecy, in
other words, is a prime cause of brittleness—and therefore something likely
to make a system prone to catastrophic collapse. Conversely, openness
provides ductility."– Bruce SchneierIn practice, the algorithm that underlies
the encryption code has to be known. It's not useful and is also dangerous to
rely on the secrecy of the algorithm in order to exchange secret messages.
The reason is that, essentially, if an algorithm has to be used by an open
community (just like the internet), it is impossible to keep it secret.The
second statement is The security of an algorithm depends largely on its

underlying mathematical problem.As an example, RSA, one of the most
famous and most widely used algorithms in the history of cryptography, is
supported by the mathematical problem of factorization.Factorization is
essentially the decomposition of a number into its divisors: 21 = 3 x 7 It's
very easy to find the divisors of 21, which are 3 and 7, for small integers, but
it is also well known that increasing the number of digits will exponentially
increase the problem of factorization.We will deeply analyze asymmetric
algorithms such as RSA in this book, and in particular, in Chapter 3,
Asymmetric Encryption, when I will explain asymmetric encryption. But
here, it is sufficient to explain why RSA is used to protect financial,
intelligence, and other kinds of very sensitive secrets.The reason is that the
mathematical problem underlining RSA (factorization) is still a hard problem
to solve for computers of this generation. However, in this introductory
section, I can't go deeper into analyzing RSA, so I will limit myself to saying
that RSA suffers from not only the problem of factorization as its point of
attack, but there is another equally competitive, in computational terms,
problem, which is the discrete logarithm problem. Later in the book, we will
even analyze both these hard computational problems. Now, we assume
(incorrectly, as 99% of cryptographic texts do) that the pillar of security
underlying RSA is factorization. In Chapter 6, New Algorithms in
Public/Private Key Cryptography, I will show an attack on the RSA
algorithm depending on a problem different from factorization. It's the
similitude of the weak link of the chain explained at the beginning of this
section. If something in an algorithm goes wrong, the underlying security of
the algorithm fails.Anyway, let's see what happens when we attempt to break
RSA relying only on the factorization problem, using brute force. In this case,
just to give you an idea of the computational power required to decompose an
RSA number of 250 digits, factorizing a big semi-prime number is not easy at
all if we are dealing with hundreds of digits, or thousands. Just to give you a
demonstration, RSA-250 is an 829-bit number composed of 250 decimal
digits and is very hard to break with a computer from the current
generation.This integer was factorized in February 2020, with a total
computation time of about 2,700 core years with Intel Xeon Gold 6130 at
2.1 GHz. Like many factorization records, this one was performed using a
grid of 100 several machines and an optimization algorithm that elevated
their computation.The third statement is Practical security is always less
secure than theoretical security.For example, if we analyze the Vernam

cipher, we can easily understand how the implementation of this algorithm in
practice is very difficult. So, we can say that Vernam is invulnerable but only
in theoretical security, not in practical security. A corollary of this
assumption is this: implementing an algorithm means putting into practice its
theoretical scheme and adding much more complexity to it. So, complexity is
the enemy of security. The more complex a system is, the more points of
attack can be found.Another consideration is related to the grade of security
of an algorithm. We can better understand this concept by considering
Shannon's theory and the concept of perfect secrecy. The definition given by
Claude Shannon in 1949 of perfect secrecy is based on statistics and
probabilities. However, about the maximum grade of security, Shannon
theorized that a ciphertext maintains perfect secrecy if an attacker's
knowledge of the content of a message is the same both before and after the
adversary inspects the ciphertext, attacking it with unlimited resources. That
is, the message gives the adversary precisely no information about the
message contents.To better understand this concept, I invite you to think of
different levels or grades of security, in which any of these degrees is secure
but with a decreasing gradient. In other words, the highest level is the
strongest and the lowest is the weakest but in the middle, there is a zone of an
indefinite grade that depends on the technological computational level of the
adversary.It's not important how many degrees are supposed to be secure and
how many are not. I think that, essentially, we have to consider what is
certainly secure and what is not, but also what can be accepted as secure in a
determinate time. With that in mind, let's see the difference between perfect
secrecy and secure:

A cryptosystem could be considered to have perfect secrecy if it satisfies
at least two conditions:

It cannot be broken even if the adversary has unlimited computing
power.
It's not possible to get any information about the message, [m], and
the key, [k], by analyzing the cryptogram, [c] (that is, Vernam is a
theoretically perfect secrecy system but only under determinate
conditions).

A cryptogram is secure even if, theoretically, an adversary can break the
cryptosystem (that is, if they had quantum computational power and an
algorithm of factorization that runs well) but the underlying

mathematical problem is considered at that time very hard to solve.
Under some conditions, ciphers can be used (such as RSA, Diffie-
Hellmann, and El Gamal) because, based on empirical evidence,
factorization and discrete logarithms are still hard problems to solve.

So, the concept of security is dynamic and very fuzzy. What is secure now
might not be tomorrow. What will happen to RSA and all of the classical
cryptography if quantum computers become effective, or a powerful
algorithm is discovered tomorrow that is able to break the factorization
problem? We will come back to these questions in Chapter 8, Quantum
Cryptography. For now, I can say that most classical cryptography
algorithms will be broken by the disruptive computational power of quantum
computers, but we don't know yet when this will happen.Under some
conditions, we will see that the quantum exchange of the key can be
considered a perfect secrecy system. But it doesn't always work, so it's not
currently used. Some OTP systems could now be considered highly secure
(maybe semi-perfect secrecy), but everything depends on the practical
implementation. Finally, remember an important rule: a weak link in the
chain destroys everything.So, in conclusion, we can note the following:

Cryptography has to be open source (the algorithms have to be known),
except for the key.
The security of an algorithm depends largely on its underlying
mathematical problem.
Complexity is the enemy of security.
Security is a dynamic concept: perfect security is only a theoretical
issue.

Summary
In this chapter, we have covered the basic definitions of cryptography; we
have refreshed our knowledge of the binary system and ASCII code, and we
also explored prime numbers, Fermat's equations, and modular mathematics.
Then, we had an overview of classical cryptographic algorithms such as
Caesar, Beale, and Vernam.Finally, in the last section, we analyzed security
in a philosophical and technical way, distinguishing the grade of security in
cryptography in relation to the grade of complexity.In the next chapter, we

will explore symmetric encryption, where we deep dive into algorithms such
as the Data Encryption Standard (DES) and Advanced Encryption
Standard (AES) families, and also address some of the issues mentioned in
this chapter.

2 Symmetric Encryption Algorithms

Join our book community on Discord
https://packt.link/SecNet

After having an overview of cryptography, it's time now to present the
principal algorithms in symmetric encryption and their logic and
mathematical principles.In Chapter 1, Deep Diving into Cryptography, we
saw some symmetric cryptosystems such as ROT13 and the Vernam cipher.
Before going further into describing modern symmetric algorithms, we need
an overview of the construction of block ciphers.If you recall, symmetric
encryption is performed through a key that is shared between the sender and
receiver and vice versa. But how do we implement symmetric algorithms that
are robust (in the sense of security) and easy to perform (computationally) at
the same time? Let's see how we can answer this question by comparing
asymmetric with symmetric encryption.One of the main problems with
asymmetric encryption is that it is not easy to perform the operations
(especially the decryption), due to the high capacity of computation required
to perform such algorithms at the recommended security levels. This problem
implies that asymmetric encryption is not suitable for transmitting long
messages, but it's better to exchange the key. Hence, by using symmetric
encryption/decryption performed with the same shared key, we obtain a
smoother scheme to exchange encrypted messages.In this chapter, we will
learn about the following topics:

Understanding the basics of Boolean logic

https://packt.link/SecNet

Understanding the basics of simplified DES
Understanding and analyzing DES, Triple DES, and DESX
Understanding AES (Rijndael) – the actual standard in symmetric
encryption
Implementing some logical and practical attacks on symmetric
algorithms

By the end of the chapter, you will have understood how to implement,
manage, and attack symmetric algorithms.

Notations and operations in Boolean logic
In order to understand the mechanism of symmetric algorithms, it is
necessary to go over some notations in Boolean logic and these operations on
a binary system.As we have already seen in Chapter 1, Deep Diving into
Cryptography, the binary system works with a set of bits of {0,1}. So, dealing
with Boolean functions means performing logic calculations on a sequence of
bits to generate an answer that could be either TRUE or FALSE.The most
frequently used functions are XOR (exclusive OR), OR (disjunction), and
AND (conjunction). But there are a few other notations as well that will be
explained soon.A Boolean circuit aims to determine whether a variable, (x),
combined with another variable, (y), satisfies the condition TRUE or
FALSE. This problem is called the Boolean Satisfiability Problem (SAT)
and it is of particular importance in computer science. SAT was the first
problem to be shown as NP-complete. The question is as follows: given a
certain function, does an assignment of the values TRUE or FALSE exist
such that the expression results in TRUE?A formula of propositional logic is
satisfiable if there exists an assignment that can determine that a proposition
is TRUE. If the result is FALSE for all possible variable assignments, then
the proposition is said to be unsatisfiable. That is of great importance in
algorithm theory, such as for the implementation of search engines, and even
in hardware design or electronic circuits.Let's give an example of
propositional logic:

Premise 1: If the sky is clear, then it is sunny.
Premise 2: There are no clouds in the sky.
Conclusion: It's TRUE that it is sunny.

As you can see in Figure 2.1, starting from an input and elaborating on the
logic circuit with an algorithm, we obtain a conclusion of TRUE or
FALSE.All these concepts will be particularly useful in further chapters of
the book, especially Chapter 5, Introduction to Zero-Knowledge Protocols,
when we talk about zero knowledge, and Chapter 9, Crypto Search Engine,
where we talk about a search engine that works with encrypted data:

Figure 2.1 – A Boolean circuit gives two opposite variables as output

The basic operations performed in Boolean circuits are as follows:

AND (conjunction): Denoted with the symbol (X^Y). This condition is
satisfied when X together with Y is true. So, we are dealing with
propositions such as pear AND apple, for example. If we are searching
some content (let's say a database containing sentences and words),
setting the AND operator will select all the elements containing both the
words (pear and apple), not just one of them. Now let's explore how
this operator works in mathematical mode. The AND operator
transposed in mathematics is a multiplication of (X * Y). The following
is a representation of the truth table for all the logic combinations of the
two elements. As you can see, only when X * Y = 1 does it mean that
the condition of conjunction (X^Y) is satisfied:

Figure 2.2 – Mathematical table for "AND"

OR (disjunction): Denoted by the symbol (XVY). This condition is
satisfied when at least one of the elements of X or Y is true. So, we are
dealing with a proposition such as pear OR apple. Our example of
searching in a database will select all the elements containing at least
one of the two words (pear or apple).

In the following table, you can see the OR operator transposed in the
mathematical operation (X+Y). At least one of the variables assumes the
value 1, so it satisfies the condition of disjunction (XVY), represented by the
sum of the two variables:

Figure 2.3 – Mathematical table for "OR"

Important Note

Idempotence, from idem + potence (same + power), is a property of
certain operations in mathematics and computer science that
denotes that they can be applied multiple times without changing
the result beyond the initial application. Boolean logic has
idempotence within both AND and OR gates. A logical AND gate
with two inputs of A will also have an output of A (1 AND 1 = 1, 0
AND 0 = 0). An OR gate has idempotence because 0 OR 0 = 0 and
1 OR 1 = 1.

NOT (negation): Denoted with the symbol (¬X), meaning X excludes
Y. So, we are dealing with propositions such as pear NOT apple. For
example, if we search in a database, we are looking for documents
containing only the first word or value (pear) and not for the second
(apple). Finally, in the following table, you can see represented the
NOT operator denoted by the symbol of negation, (¬X). It is represented
by a unitary operation that gets back the opposite value with respect to
its input:

Figure 2.4 – Mathematical table for "NOT"

These basic Boolean operators, AND, OR, and NOT, can be represented by a
Venn diagram as follows:

Figure 2.5 – Boolean operators represented by a Venn diagram

Besides the three basic operations just explored, there are more logic
operations, including NAND, NOR, and XOR. All these operations are
fundamental in cryptography. The NAND logical operator, for example, is
used in homomorphic encryption; however, for now, we will limit
ourselves to analyzing the XOR operator, also known as exclusive OR. XOR
is also denoted by the symbol.The operation of A B gives back the logic
value of 1 if the number of variables that assume value 1 is odd. In other
words, if we consider two variables, A and B, if both are either TRUE or
FALSE, then the result is FALSE. As we can see in the following table,
when A = 1 and B = 1, the result is 0 (FALSE). In mathematical terms, XOR
is an addition modulo 2, which means adding combinations of 1 and 0 in
mod 2, as you can see in the following table, is called exclusive OR (often
abbreviated to XOR):

Figure 2.6 – Representing the XOR operations between 0 and 1

The XOR logic operator is used not only for cryptographic algorithms but
also as a parity checker. If we run XOR in a logic circuit to check the parity
bits in a word of 8 bits, it can verify whether the total number of ones in the
word is a pair or not a pair.Now that we have explored the operations behind
Boolean logic, it's time to analyze the first algorithm of the symmetric family:
DES.

DES algorithms
The first algorithm presented in this chapter is Data Encryption Standard
(DES). Its history began in 1973 when the National Bureau of Standards
(NBS), which later became the National Institute of Standards and
Technology (NIST), required an algorithm to adopt as a national standard. In
1974, IBM proposed Lucifer, a symmetric algorithm that was forwarded
from NIST to the National Security Agency (NSA). After analysis and some
modifications, it was renamed DES. In 1977, DES was adopted as a national
standard and it was largely used in electronic commerce environments, such
as in the financial field, for data encryption.Remarkable debates arose over
the robustness of DES within the academic and professional community of
cryptologists. The criticism derived from the short key length and the
perplexity that, after a review advanced by the NSA, the algorithm could be
subjected to a trapdoor, expressly injected by the NSA into DES to spy on
encrypted communications. Despite the criticisms, DES was approved as a
federal standard in November 1976 and was published on January 15, 1977
as FIPS PUB 46, authorized for use on all unclassified data. It was
subsequently reaffirmed as the standard in 1983, 1988 (revised as FIPS-46-
1), 1993 (FIPS-46-2), and again in 1999 (FIPS-46-3), the latter prescribing
Triple DES (also known as 3DES, covered later in the chapter). On May 26,
2002, DES was finally superseded by the Advanced Encryption Standard
(AES), which I will explain later in this chapter, following a public
competition. DES is a block cipher; this means that plaintext is first divided
into blocks of 64 bits and each block is encrypted separately. The encryption
process is also called the Feistel system, to honor Horst Feistel, one of the
members of the team at IBM who developed Lucifer.Now that a little bit of
the history of this progenitor of modern symmetric algorithms has been
revealed, we can go further into the explanation of its logical and
mathematical scheme.

Simple DES

Simple DES is nothing but a simplified version of DES. Before we delve into
how DES works, let's take a look into this simplest version of DES.Just like
DES, this simplified algorithm is also a block cipher, which means that

plaintext is first divided into blocks. Because each block is encrypted
separately, we are supposed to analyze only one block. The key, [K], is made
up of 9 bits and the message, [M], is made up of 12 bits.The main part of the
algorithm, just like in DES, is the S-Box, where S stands for Substitution.
Here lies the true complexity and non-linear function of symmetric
algorithms. The rest of the algorithm is only permutations and shifts over the
bits, something that a normal computer can do automatically, so there is no
reason to go crazy over it.An S-Box in this case is a 4X16 matrix consisting
of 6 bits as input and 4 bits as output.We will find that the S-Box is present in
all modern symmetric encryption algorithms, such as DES, Triple DES,
Bluefish, Blowfish and AES.The four rows are represented by progressive 2
bits, as follows: 00011011 The 16 lines of the columns instead consist of 4
bits in this sequence: 0000 0001 0010 …… …… …… …… 1111 The matrix's boxes
consist of random numbers between 0 and 15, which means they never get
repeated inside the same row.In order to better understand how S-Box is
implemented and how it works, here is an example: 011011. This string of
bits has two outer bits, 01, and four middle bits, 1101.In this case (working in
the binary system, using the N2 notation), (01)2 corresponds to the second
row, and (1101)2 corresponds to the 13th column. By finding the intersection
of the column and the row, we obtain (1001)2.You can see the representation
in binary numbers of the S-Box matrix described here:

Figure 2.7 – An S-Box matrix (intersection) of 4X16 represented in binary
numbers

The same matrix can be represented in decimal numbers as follows:

Figure 2.8 – An S-Box matrix of 4X16 represented in decimal numbers

Here, the number 9 represents the intersection between row 2 and column 13.
So, the number found crossing row 2 and column 13, represented in a binary
system as (1001)2, corresponds to 9 in the decimal system.Now that we are
clear on what S-Box is and how it is designed, we can see how the algorithm
works.

Bit initialization

The message, M, consisting of 12 bits, is divided into two parts, L0 and R0,
where L0, the left half, consists of the first 6 bits and R0, the right half,
consists of the last 6 bits:

Figure 2.9 – Message (M) is split into 6 bits to the left and 6 bits to the right

Now that we have a clear concept of S-Box and bit initialization, let's proceed
with the other phases of the process: bit expansion, key generation, and bit
encryption.

Bit expansion

Each block of bits, the left and right parts, is expanded through a particular
function that is normally called f. The DES algorithm uses an expansion at 8
bits (1 byte) starting from 6-bit input for each block of plaintext.Moreover,
DES uses a modality of partition called Electronic Codebook (ECB) to
divide the 64 bits of plaintext into 8X8 bits, for each block performing the
(Ek) encryption function.Any f could be differently implemented, but just to
give you an example, the first input bit becomes the first output, the third bit
becomes the fourth and the sixth, and so on. Just like the following example,
let's say we want to expand the 6-bit L0: 011001 input with an expansion
function, Exp, following this pattern:

Figure 2.10 – Bit expansion function [EXP]

As you can see in the preceding figure, L0 = (011001)2 has been expanded
with f [12434356]. Then, L0: 011001 will be expanded into (01010101)2, as
shown in the following figure:

Figure 2.11 – L 0 (011001) 2 bit expansion 8 bits

Expanding the 6-bit R0: (100110)2 input to 8 bits with the same pattern, f
[12434356], in Ri-1 = (100110)2, we obtain the following:

Figure 2.12 – R 0 (100110) 2 bit expansion 8 bits

So, the expansion of Ri-1 will be (10101010)2.

Key generation

As we have already said, the master key, [K], is made up of 9 bits. For each
round, we have a different encryption key, [Ki], generated by 8 bits of the
master key, starting counting from the ith round of encryption.Let's take an
example to clarify the key generation K4 (related to the fourth round):

K = 010011001 (9-bit key, the master key)
K4 = 01100101 (8 bits taken by K)

The following figure will help you better understand the process:

Figure 2.13 – Example of key generation

As you can see in the previous figure, we are processing the fourth round of
encryption, so we start to count from the fourth bit of master key [K] to
generate [K4].

Bit encryption

To perform the bit encryption, (E), we use the XOR function between Ri-1=
(100110)2 expanded and Ki = (01100101)2.I call this output
E(Ki): Exp(Ri-1) Ki = 10101010 01100101 = E(Ki) (11001111) At this
point, we split E(Ki), consisting of 8 bits, into two parts: a 4-bit half for the
left and a 4-bit half for the right: L(EKi)= (1100)2 R(EKi)= (1111)2. Now,
we process the 4 bits to the left and the 4 bits to the right with two S-Box
2X8 matrices consisting of 3 bits for each element. The input, as I mentioned
earlier, is 4 bits: the first one is the row and the last three represent a binary
number to indicate the column (the same as previously, just with fewer bits).
So, 0 stands for first and 1 stands for second. Similarly, 000 stands for the
first column, 001 stands for the second column, and so on until 111.We call
the two S-Boxes S1 and S2. The following figure represents the elements of
each one:

Figure 2.14 – Example of S-Boxes

L (E(Ki)) = (1100)2 is processed by S1; so, the element of the second row,
(1)2, and the fourth column, (100)2, is the output, here represented by the
number (000)2. R (E(Ki)) = (1111)2 is processed by S2; so, the element of the
second row, (1)2, and the seventh column, (111)2, is the output, here
represented by the number (100)2.Now, the last step is the concatenation of
the two outputs obtained, here expressed by the notation ||, which will
perform the
ciphertext: S1(L(E(Ki))) = (000)2 || S2(R(E(Ki))) = (100)2000 || 100 = (000100)2f (Ri-1, Ki) = (000100)2
following figure shows how the encryption of the first round (the right side)
of the function f mathematically works:

Figure 2.15 – Mathematical scheme of (simple) DES encryption at the first
round (right side)

Now that we have understood how simple DES works and covered the basics
of symmetric encryption, it will be easier to understand how the DES family
of algorithms work.As you have seen, the combination of permutations, XOR
and shift, is the pillar of the structure of the Feistel system.

DES

DES is a 16-round encryption/decryption symmetric algorithm. DES is a 64-
bit cipher in every sense. The operations are performed by dividing the
message, [M], into 64-bit blocks. The key is also 64 bits; however, it is
effectively 56 bits (plus 8 bits for parity: 8th, 16th, 24th…). This technique
eventually allows us to check errors. Finally, the output, (c), is 64 bits too. I
would like you to focus on the DES encryption scheme of Figure 2.15 to
fully understand DES encryption.

Key generation in DES

Based on Shannon's principle of confusion and diffusion, DES, just like most
symmetric algorithms, operates over bit scrambling to obtain these two
effects.As already mentioned, the DES master key is a 64-bit key. The key's
bits are enumerated from 1 to 64, where every eighth bit is ignored, as you
can see in the highlighted column in the following table:

Figure 2.16 – Bits deselected in the DES master key

After the deselection of the bits, the new key is a 56-bit key. At this point, the
first permutation on the 56-bit key is computed. The result of this operation is

confusion on the bit positions; then, the key is divided into two 28-bit sub-
keys called C0 and D0. After this operation (always in the same line to create
a bit of confusion and diffusion), it performs a circular shift process as shown
in the following table:

Figure 2.17 – Showing the number of key bits shifted in each round in DES

If you look at the preceding table, you can notice rounds 1, 2, 9, and 16 shift
left by only 1 bit; all the other rounds shift left by 2 bits. Let's take as an
example of C0, D0 (the original division of the key in 28-bit left and 28-bit
right), expressed in binary notation as follows:
C0 = 1111000011001100101010101001 D0 = 0101010101100110011110001111

from C0 and D0, C1 and D1 will be generated, as follows:
C1 = 1110000110011001010101010011 D1 = 1010101011001100111100011110

you focus on the step of the generation of C0 --> C1, you can better
understand how it works – it's a simple shift to the left of all the bits of C0
with respect to C1:
C0 = 1111000011001100101010101001C1 = 1110000110011001010101010011

the circular shift, as explained, the next step is to process a selection of 48
bits over the subset key of 56 bits. It's a simple permutation of position: just
to give an example, bit number 14 moves to the first position and bit number
32 moves to the last position (48th). As you can see in the following table,
some bits, just like bit number 18, are discarded in the new configuration, so
you don't find them in the table. At the end of the process of bit compression,
only 48 bits are selected; consequently, 8 bits are discarded:

Figure 2.18 – Transformation and compression in a 48-bit subset key

In the following figure, you can see the whole process of key generation,
which combines Parity Drop, Shift Left, and Compression:

Figure 2.19 – The key generation scheme

Because of this compression/confusion/permutation technique, DES is able to
determine different sub-keys, one per round of 48 bits. This makes DES
difficult to crack.

Encryption

After we have generated the key, we can proceed with the encryption of the
message, [M].The encryption scheme of DES consists of three phases:

Step 1 – initial permutation: First, the bits of the message, [M], are
permutated through a function that we call Initial Permutation (IP).
This operation from a cryptographic point of view does not seem to
augment the security of the algorithm. After the permutation, the 64 bits
are divided into 32 bits in L0 and 32 bits in R0 just like we did in
simplified DES.
Step 2 – rounds of encryption: For 0 ≤ i ≤ 16, the following operations
are executed:

Li = Ri-1 Compute Ri = Li-1 f(Ri-1, Ki).Here, Ki is a string of 48 bits
obtained from the key K (round key j) and f is a function of expansion similar
to the f described earlier for simple DES.Basically, for i = 1 (the first round),
we have the following: L1 = R0R1 = L0s f(R0, K1)

Step 3 – final permutation: The last part of the algorithm at the 16th

round (the last one) consists of the following:
Exchanging the left part, L16, with the right part, R16, in order to
obtain (R16, L16)
Applying the inverse, INV, of the IP to obtain the ciphertext, c,
where c = INV(IP (R16, L16))

The following figure is a representation of an intelligible scheme of DES
encryption:

Figure 2.20 – DES encryption

To summarize the encryption stage in DES, we performed a complex process
for key generation, where a selection of 48-bit subsection keys on a master
key of 64 bits was made. There are consequently three steps: IP, rounds of
encryption, and final permutation.Now that we have analyzed the encryption
process, we can move on to DES decryption analysis.

Decryption

DES decryption is very easy to understand. Indeed, to get back the plaintext,
we perform an inverse process of encryption.The decryption is performed in
exactly the same manner as encryption, but by inverting the order of the keys
(K1…K16) so that it becomes (K16…K1).In the following figure, you see the
decryption process in a flow chart scheme:

Figure 2.21 – DES decryption process

So, to describe the decryption process: you take the ciphertext and operate the
first IP on it, then XOR L0 (left part) with R0 = f(R0, K16).Then you keep
on going like that for each round, make a final permutation, and end up
finding the plaintext.Now that we have arrived at the end of the DES
algorithm process, let's go ahead with the analysis of the algorithm and its
vulnerabilities.

Analysis of the DES algorithm

Going a little bit more into the details of the algorithm, we can discover some
interesting things.One of the most interesting steps of DES is the XOR
operation performed between the sub-keys (K1, K2…K16) and the half part
of the message, [M], at each round.In this step, we find the S-Box: the
function f previously described in simplified DES.As we saw earlier, the S-
Box is a particular matrix in DES that consists of 4 rows and 16 columns (S-
Box 4X16) fixed by the NSA:

Figure 2.22 – S-Box matrix in DES

Take a look at the specifics of the S-Box in the fifth 5th round of
DES: 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0 14, 914, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 64, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 1411, 8, 12, 7, 11, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
you might notice, the numbers included are between 0 and (Ri-1) 16-1 =
15.So, 48 bits of input will give exactly 48 bits of output after the XOR
operation is performed with [Ki].Moreover, if you observe carefully, in the
14th column, all the numbers are very low: 0, 9, 3, and 4. Would this
combination pose a problem for security? You will be perplexed if I tell you
that it will not be an issue to play with little numbers inside an S-
Box.Another question that may come to you spontaneously might be Why is
the key only 56 bits and not 64 bits? Because, as I already mentioned, the
other 8 bits are used for pairing. Actually, the initial master key is 64 bits in
length, so every eighth bit of the key is discarded. The final result is a 56-bit
key, as you see in the following figure:

Figure 2.23 – Bit discarded in the DES key generation algorithm

There is one more concern that could arise from the method of encryption
adopted in DES. After the IP, as you can see, the bits are encrypted only on
the right side through the f(Ri-1, Ki) function. You might ask whether this is
less secure than encrypting all the bits. If you analyze the scheme properly,
you will notice that at each round, the bits are exchanged from left to right,
then encrypted, and vice versa. This technique is like a wrap that allows all
the bits to be encrypted, not just the right part as it would seem at first
glance.Looking back at the initial and final permutation functions, you may
ask: when making an initial and final inverse permutation, isn't the final result
neutral? As I already mentioned, there isn't any cryptographic sense in
performing a permutation of bits like that. The reason is that bit insertion into
hardware in the 70s was much more complicated than it is now. To complete
the discussion, I can say that the entire process adopted in DES for

substitution, permutation, E-expansion, and bit-shifting generates confusion
and diffusion. At the beginning of this section, I already quoted this concept
when I mentioned the security cipher principle identified by Claude Shannon
in his A Mathematical Theory of Communication.

Violation of DES

The history of the attacks performed to crack DES since its creation is rich in
anecdotes. In 1975, among the academic community, skepticism against the
robustness of the key length with respect to the 56-bit keys started to arise.
Many articles have been published; one very interesting prediction of
Whitney Diffie and Martin Hellman (the same pair from the Diffie and
Hellman exchange of the key seen in Chapter 3, Asymmetric Encryption) was
that a computer worth $20 million (in 1977) could be built to break DES in
only 1 day.More than 20 years later, in 1998, the Electronic Frontier
Foundation (EFF) developed a dedicated computer called DES Cracker to
break DES. The EFF spent a little less than $250,000 and employed 37,050
units embedded into 26 electronic boards. After 56 hours, the supercomputer
gained the decryption of the plaintext message object of a challenge as there
was a $10,000 reward for the decryption of the ciphertext. The method
adopted was a simple brute-force method to analyze all the possible
combinations of bits given by the 2^56 (about 72 quadrillion) possible keys.
The EFF was able to crack DES using hardware that incorporated 1,500
microchips working at 40 MHz, in 4.5 days of running time. Imagine, only 1
microchip would take 38 years to explore the entire set of keys.At this point,
the authorities decided to replace the algorithm with a new symmetric key
algorithm, and here came AES. But before exploring AES, let's analyze some
possible attacks on DES. I will present next some possible attacks on DES,
taking into consideration that most of these methods are used to attack most
symmetric algorithms. Some of the attacks are specific to blocking ciphers,
while others are valid for streaming ciphers too. The difference is that in a
stream cipher, 1 byte is encrypted at a time, while in a block cipher, ~128 bits
are encrypted at a time (block):

Brute-force attack: This basic method of attack can be performed for
any known cipher, meaning trying all the possibilities to find the key. If
you recall, the key length of DES is a 56-bit key, which means an

attacker would evaluate all the 72,057,594,037,927,936 possibilities
(2^56). But, as we need to try less than all the sets of keys, because
statistically, as proved by Mitsuru Matsui, with (2^47) known-plaintexts
it is possible to break 16-round DES. This is not a computation to be
taken lightly, but despite this, DES has been a breakable algorithm since
the early 90s. For your reference if interested you can find the Mitsuru
Matsui’s paper here: https://link.springer.com/content/pdf/10.1007/3-
540-48285-7_33.pdf
Linear cryptanalysis: This is essentially a statistical method of attack
based on known plaintext. It doesn't guarantee success every time, but it
does work most of the time. The idea is to start from the known input
(plaintext) and arrive at determining the key of encryption and,
consequently, all the other outputs generated by that key.
Differential cryptanalysis: This method is technical and requires
observing some vulnerabilities inside DES (similar to other symmetric
algorithms). This attack method attempts to discover the plaintext or the
key, starting from a chosen plaintext. Unlike linear cryptanalysis, which
starts from improbable known plaintext, the attacker operates knowing
chosen plaintext.

Last but not least, a vulnerability of DES is called weak keys: these keys are
simply not able to perform any encryption. This is very dangerous because if
applied, you get back plaintext. These keys are well known in cryptography
and have to be avoided. That happens when the sequence of the 16th key
(during the key generation) produces all 16 identical keys.Let's see an
example of this problem:

A sequence of bits all equal to 0000000000000000 or
1111111111111111
A sequence of alternate bits, 0101010101010101 or
1010101010101010

In all four cases, it turns out that the encryption is auto-reversible, or in other
words, if you perform two encryptions on the same ciphertext, you will
obtain the original plaintext.

Triple DES

https://link.springer.com/content/pdf/10.1007/3-540-48285-7_33.pdf

As I mentioned previously, one of the main weaknesses found in DES was
the key length of 56 bits. So, to amplify the volume of keys and to extend
their life, a new version of DES was proposed in the form of Triple DES.The
logic behind 3DES is the same as DES; the difference is that here we run the
algorithm three times with three different keys.The following figure shows a
scheme proposed to better understand 3DES:

Figure 2.24 – Triple DES encryption/decryption scheme

Let's see how the encryption and decryption stages work in DES, based on
the scheme illustrated in the preceding figure.Encryption in 3DES works as
follows:

Encrypt the plaintext blocks using single DES with the [K1] key.
Now, decrypt the output of step 1 using single DES with the [K2] key.
Finally, encrypt the output of step 2 using single DES with the [K3] key.

The output of step 3 is the ciphertext (C).Decryption in 3DESThe
decryption of ciphertext is a reverse process. The user first decrypts using
[K3], then decrypts with [K2], and finally decrypts with [K1].

DESX

The last algorithm of the DES family is DESX. This is a reinforcement of
DES's key proposed by Ronald Rivest (the same coauthor of RSA).Given that
DES encryption/decryption remains the same as earlier, there are three
chosen keys: [K1], [K2], and [K3].The following encryption is
performed: C = [K3] EK1 ([K2] [M]) First, we have to perform the
encryption (EK), making an XOR between [K2] and the message, [M]. Then,
we apply DES, encrypting with [K1] 56 bits. Finally, we add the outputs EK1,
XOR, and [K3]. This method allows us to increase the virtual key to be 64 +
56 + 64 = 184 bits, instead of the normal 56 bits:

Figure 2.25 – DESX encryption scheme

After exploring the DES, 3DES, and DESX algorithms, we will approach
another pillar of the symmetric encryption algorithm: AES. Lightweight
Encryption

AES Rijndael
AES, also known as Rijndael, was chosen as a very robust algorithm by
NIST (the US government) in 2001 after a 3-year testing period among the
cryptologist community.Among the 15 candidates who competed for the best
algorithm, there were five finalists chosen: MARS (IBM), RC6 (RSA
Laboratories), Rijndael (Joan Daemen and Vincent Rijmen), Serpent
(Ross Anderson and others), and Twofish (Bruce Schneier and others).
All the candidates were very strong but, in the end, Rijndael was a clear
winner.The first curious question is about its name: how is Rijndael
pronounced?It's dubiously difficult to pronounce this name. From the web
page of the two authors, we can read that there are a few ways to pronounce
this name depending on the nationality and the mother tongue of who
pronounces it.Just to start, I can say that AES is a block cipher, so it can be
performed in different modes: ECB (already seen in DES), Cipher Block
Chaining (CBC), Cypher Cipher Feedback Block (CFB), Output
Feedback Block (OFB), and Counter (CTR) mode. We will see some better
differences between implementations in this section.AES can be performed
using different key sizes: 128-, 192-, and 256-bit. NIST's competition aimed
to find an algorithm with some very strong characteristics, such as it should
be operating in blocks of 128 bits of input or it should be able to be used on
different kinds of hardware, from 8-bit processors (used also in a smart card)
to 32-bit architectures, commonly adopted in personal computers. Finally, it
should be fast and very robust.Under certain conditions (that you will
discover later), I think this is one of the best algorithms ever; indeed, I have
chosen to implement AES 256 in our Crypto Search Engine (CSE). We will
see CSE again in Chapter 9, Crypto Search Engine. At Cryptolab we
currently adopt AES to secure the symmetric encryption of data encrypted
and transmitted between virtual machines that encrypt and store data.

Description of AES

Discussing AES would alone require a dedicated chapter. In this section, I
provide an overview of the algorithm. For those of you interested in knowing
more, you can refer to the documentation presented by NIST (published on
November 26, 2001) reported in the document titled FIPS PUB 197. I am
limited in this chapter to describing the algorithm at just a high level and will
give my comments and suggestions.Most importantly, to avoid any
confusion, I will analyze AES in a different manner not found in other
papers. My analysis of AES will be based on the subdivision of the algorithm
into different steps. I have called these steps Key Expansion and First Add
Round Key; then, as you will see later on, each step is divided into four sub-
steps, called SubBytes transformation, ShiftRows transformation,
MixColumn, and AddRoundKey. The important thing is to understand the
scheme of the algorithm, then each round works similarly, and you can easily
be guided to understand the mechanism of 10 rounds for a 128-bit key, 12
rounds for 192 bits, and 14 rounds for 256 bits. Key Expansion (KE) works
as follows:

The fixed key input of 128 bits is expanded into a key length depending
on the size of AES: 128, 192, or 256.
Then, the [K1], [K2],…[Kr] sub-keys are created to encrypt each round
(generally adding XOR to the round).
AES uses a particular method called Rijndael's key schedule to expand a
short master key to a certain number of round keys.

First Add Round Key (F-ARK) works as follows.It is the first operation.
The algorithm takes the first key, [K1], and adds it to AddRoundKey: using
a bitwise XOR of the current block with a portion of the expanded
key.Rounds R1 to Rn-1 work as follows.Each round (except the last one) is
divided into four steps called layers consisting of the following:

SubBytes (SB) transformation: This step is a fundamental non-linear
step, executed through a particular S-Box (we have already seen how an
S-Box works in DES). You can see the AES S-Box in the following
figure.
ShiftRows (SR) transformation: This is a scrambling of a bit that

causes diffusion on multiple rounds.
MixColumns (MC) transformation: This step has a similar scope to
SR but is applied to the columns.
AddRoundKey (ARK): The round key is XORed with the result of the
previous layer.

The following figure represents S-Box Rijndael expressed in hexadecimal
notation:

Figure 2.26 – S-Box Rijndael

The last round runs all the operations of the previous rounds except for layer
3: MC. After all the earlier-mentioned processes are run for each round n
times (depending on the size of the key: 14 rounds if the key is 256 bits),
AES encryption obtains the ciphertext, (C), as shown in the following figure:

Figure 2.27 – Encryption scheme in AES

Thus, we can re-schematize the entire process of AES encryption in a
mathematical function as follows:

Figure 2.28 – Re-schematizing an AES flow chart with mathematical
functions

As you can notice from the proposed scheme in the preceding figure, we have
the following:

Kr [(R1~ (Rr-1))] represents all the mathematical processes performed
between each round key, (Kr), XORed with the inside functions of each
rounds, starting from the first round (after the F-ARK to the last round
(excluded)). So, inside [(R1~ (Rr-1))], we find the [(SB) ~(SR)~(MC)~
(ARK)] functions.
In the last round, as you can notice, MC is not present.

In the following figure, you can see the entire process of encryption and
decryption in AES:

Figure 2.29 – Encryption and decryption scheme in AES

After schematizing the AES operations of encryption and decryption, we now
analyze the attacks and vulnerabilities on this algorithm.

Attacks and vulnerabilities in AES

The NSA and NIST publications deemed AES as invulnerable to any kind of
known attack.However, AES has its vulnerabilities; in fact, every system that
can be implemented has vulnerabilities.

Important Note

Recall the NIST document reporting the possible vulnerabilities of
AES (documented on October 2, 2000). You can read it at
https://www.nist.gov/news-events/news/2000/10/commerce-
department-announces-winner-global-information-security.

In the NIST document, it states Each of the candidate algorithms was
required to support key sizes of 128, 192 and 256 bits. For a 128-bit key size,
there are approximately
340,000,000,000,000,000,000,000,000,000,000,000,000 (340 followed by 36
zeros) possible keys.However, even though theoretically AES remains
unbreakable, (-x%), using all the brute force in the world (you will see a
computational analysis of AES in Chapter 9, Crypto Search Engine), it is still
always possible to find a breach in any algorithm. It is common to find
breaches in the implementation stage. Indeed, pay attention to what happens
if you implement, for instance, AES with ECB mode. We have already seen
ECB mode in DES. This basic implementation consists of dividing the
plaintext into blocks and for each block of plaintext, P, calculating the
ciphertext, C: C = Encr (P) You can see the scheme of ECB mode
encryption in the following figure:

Figure 2.30 – ECB mode encryption

If AES were implemented in EBC mode, as you can see in the preceding
figure, in the middle (between the original and the one encrypted with

https://www.nist.gov/news-events/news/2000/10/commerce-department-announces-winner-global-information-security

another mode), there could be serious issues. For instance, in the following
ECB of Cervino mountain, it's possible to recognize the content even though
it's encrypted:

Figure 2.31 – The original picture of Cervino mountain, encrypted with ECB
(failure) mode, and encrypted with another block mode

In other words, ECB block mode vanishes the encryption effect, which
should have been the same as the third image (encrypted with another block
mode).With another attack on ECB, known as block-reply, knowing a
plaintext-ciphertext pair, even without knowing the key, it's possible for
someone to repeatedly resend the known ciphertext.Now, an interesting
example of this implication given by ECB mode is presented by Christopher
Swenson in his book Modern Cryptanalysis. If Eve (the attacker) tries to trick
Bob and Alice during the phase of information exchange, Eve can re-send the
block of known plaintext with considerable advantage to herself.For example,
consider this hypothetical scenario related to the ECB attack mentioned
previously.Alice owns a bank account, and she goes to an ATM to withdraw
money. It is assumed that the communication between Alice and the bank via
the ATM is encrypted, and we suppose it would be encrypted using
AES/ECB mode.So, the encrypted message between Alice (with the key [K])
and the bank is as follows:

ATM: Encrypt [K] (name: Alice Smith, account number: 123456,
amount: $200).
Let's say that this message encrypted with AES comes out in this form:

CF A3 1C F4 67 T3 2D M9……

Answer from the bank after having checked the account: [OK].

If Eve is listening to the communication and intercepts the encrypted
message, she could just repeat the operation several times until she steals all
of Alice's money from the account. The bank would just think that Alice is
making several more ATM withdrawals, and if no action is taken against this
attack, the victim (Alice) will have just lost all the money in her account. This
trick works because Eve resends the same message copied several times. If
the [K] key doesn't change for every session of encryption, Eve can attempt
this attack. A very efficient solution is to accept only different cryptograms
for each session, which gets rid of the use of symmetric encryption for
multiple transmissions. Otherwise, in order to prevent this kind of attack, one
of the implementations of AES (just like other block ciphers) is CBC Cipher
Block Chaining.CBC performs the block encryption generating an output
based on the values of the previous blocks.We will see this implementation
again later on, in Chapter 9, Crypto Search Engine, in the Computational
Analysis on CSE section, when I present CSE in which we have implemented
AES encryption in CBC mode.Here I'll just explain how it works.The CBC
method uses a 64-bit block size for plaintext, ciphertext, and the initialization
vector, IV. Essentially, IV is a random number, sometimes called salt,
XORed to the plaintext in order to compute the block.Just remember the
following:

E = Encryption
D = Decryption
C = Ciphertext

Encryption works as follows:

Calculate the initial block, C0, taking the first block of the plaintext,
(P0), XORing with the initialization vector (IV):

C0 = E (P0 IV)

Each successive block is calculated by XORing the previous ciphertext
block with the plaintext block and encrypting the result:

Ci = E (Pi Ci-1) Decryption works as follows:

To obtain the plaintext, (P0), combine XOR between the decryption of
the first block of ciphertext received (C0) and the initialization vector
(IV):

P0 = D (C0) IV

To obtain all the other plaintext, (Pi), we have to perform an XOR
between the decryption of the ciphertext received, (Ci), and all the other
ciphertext excluding the first one:

Pi= D (Ci) Ci-1 In the following figure, the scheme of CBC mode
encryption is represented:

Figure 2.32 – Scheme of CBC mode encryption

AES is a robust symmetric algorithm, and until 2009, the only successful
attacks were so-called side-channel attacks. These kinds of attacks are mostly
related to the implementation of AES in some specific applications.Here is a
list of side-channel attacks:

Cache attack: Usually, some information is stored in a memory cache
(a kind of memory of second order in the computer); if the attacker
monitors cache access remotely, they can steal the key or the plaintext.
To avoid that, it is necessary to keep the memory cache clean.

Timing attack: This is a method that exploits the time to perform
encryption based on the correlation between the timing and values of the
parameters. If an attacker knows part of the message or part of the key,
they can compare the real and modeled executed times. Essentially, it
could be considered a physical attack on a bad implementation of the
code much more than a logical attack. Anyway, this attack is not only
referred to as AES but also RSA, D-H, and other algorithms too, which
rely on the correlation of parameters.
Power monitoring attack: Just like the timing attack, there could be
potential vulnerabilities inherent to hardware implementation. You can
find an interesting attack experiment at the following link relating to the
correlation of the power consumption of an AES 128-bit implementation
on Arduino Uno. The attack affected the ARK and SB functions of this
algorithm, gaining the full 16-byte cipher key monitoring the device's
power consumption. For hardware lovers, this is an exciting attack:

https://www.tandfonline.com/doi/full/10.1080/23742917.2016.1231523

Electromagnetic attack: This is another kind of attack performed on
the implementation of the algorithm. One attack was attempted on
FPGA measuring the radiation that emanated from an antenna through
an oscilloscope.

Finally, the real problem of AES is the exchanging of the key. This being a
symmetric algorithm, Alice and Bob must agree on a shared key in order to
perform the encryption and decryption required. Even if AES's few
applications could be implemented without any key exchange, most need
asymmetric algorithms to make up for the lack of key transmission. We will
better understand this concept in the next chapter when we explore
asymmetric encryption. Moreover, we will see an application that doesn't
need any key exchange in Chapter 9, Crypto Search Engine, when analyzing
the CSE.

Summary
In this chapter, you learned about symmetric encryption. We have explored
the Boolean operations necessary for understanding symmetric encryption,

https://www.tandfonline.com/doi/full/10.1080/23742917.2016.1231523

KE, and S-Box functionality. Then, we deep-dived into how simple DES,
DES, 3DES, and DESX work and their principal vulnerabilities and
attacks.After these topics, we analyzed AES (Rijndael), including its
implementation schema and the logic of the steps that make this algorithm so
strong. Regarding the vulnerabilities and attacks on AES, you have
understood how the difference between ECB mode and CBC mode can make
it vulnerable to block cipher implementation attacks.Finally, we explored
some of the best-known side-channel attacks valid for most cryptographic
algorithms.These topics are essential because now you have learned how to
implement a cryptographic symmetric algorithm, and you have more
familiarity with its peculiarities. We will see many correlations with this part
in the next chapters. Chapter 9, Crypto Search Engine, will explain CSE,
which adopts AES as one of the algorithms for the transmission of encrypted
files in the cloud. Now that you have learned about the fundamentals of
symmetric encryption, it's time to analyze asymmetric encryption.

3 Asymmetric Encryption

Join our book community on Discord
https://packt.link/SecNet

Asymmetric encryption means using different pairs of keys to encrypt and
decrypt a message. A synonym of asymmetric encryption is public/private
key encryption, but there are some differences between asymmetric and
public/private key encryption, which we will discover in this chapter. Starting
with a little bit of history of this revolutionary method of
encryption/decryption, we will look at different types of asymmetric
algorithms and how they help secure our credit cards, identity, and data.In
this chapter, we are going to cover the following topics:

Public/private key and asymmetric encryption
The Diffie-Hellman key exchange and the related man-in-the-middle
problem
RSA and an interesting application for international threats
Introduction to conventional and unconventional attacks on RSA
Pretty Good Privacy (PGP)
ElGamal and its possible vulnerabilities

Let's dive in!

Introduction to asymmetric encryption

https://packt.link/SecNet

The most important function of private/public key encryption is exchanging a
key between two parties, along with providing secure information
transactions.To fully understand asymmetric encryption, we must understand
its background. This kind of cryptography is particularly important in our
day-to-day lives. This is the branch of cryptography that's deputed to cover
our financial secrets, such as credit cards and online accounts; to generate the
passwords that we use constantly in our lives; and, in general, to share
sensitive data with others securely and protect our privacy.Let's learn a little
bit about the history of this fascinating branch of cryptography.The story of
asymmetric cryptography begins in the late 1970s, but it advanced in the
1980s when the advent of the internet and the digital economy started to
introduce computers to family homes. The late 1970s and 1980s was the
period in which Steve Jobs founded Apple Inc. and was during the Cold War
between the USA and the USSR. It was also a period of economic boom for
many Western countries, such as Italy, France, and Germany. And finally, it
was the period of the advent of the internet. The contraposition of the two
blocs, Western and Eastern, with US allies on one side and the Soviet bloc on
the other side, created opposing networks of spies that had their fulcrum in
the divided city of Berlin. During this period, keys being exchanged in
symmetric cryptography reached the point that the US Government's
Authority for Communications Security (COMSEC), which is responsible
for transmitting cryptographic keys, transported tons of keys every day. This
problematic situation degenerated to a breaking point. Just to give an
example, with the DES algorithm in the 1970s, banks dispatched keys via a
courier that were handed over in person. The National Security Agency
(NSA) in America struggled a lot with the key distribution problem, despite
having access to the world's greatest computing resources. The issue of key
distribution seemed to be unsolvable, even for big corporations dedicated to
solving the hardest problems related to the future of the world, such as
RAND – another powerful institution created to manage the problems of the
future and to prevent breakpoint failures. I think that, sometimes, a
breakpoint is just a way to clear up the situation instead of just ignoring it.
Sometimes, issues have different ways they can be solved. In the case of
asymmetric encryption, no amount of government money nor supercomputers
with infinite computation and multiple brains at their service could solve a
problem that, at a glance, would appear rather easy to solve.Now that you
have an idea of the main problem that asymmetric encryption solves, which is

the key exchange (actually, we will see that in RSA, this problem gets
translated into the direct transmission of the message), let's go deeper to
explore the pioneers involved in the history of this extremely intriguing
branch of cryptography.

The pioneers

Cryptographers can often appear to be strange people; sometimes, they could
be introverts, sometimes extroverts. This is the case with Whitfield Diffie, an
independent freethinker, not employed by the government or any of the big
corporations. I met Diffie for the first time at a convention in San Francisco
in 2016 while he was discussing cryptography with his famous colleagues,
Martin Hellmann and Ronald Rives. One of the most impressive things that
remained fixed in my mind was his elegant white attire, counterposed by his
tall stature and long white hair and beard. Similar to an ever-young guy still
in the 1960s, someone whose contemporary could be an agent at the Wall
Street Stock Exchange or a holy man in India. He is one of the fathers of
modern cryptography, and his name will be forever imprinted in the history
of public/private key encryption. Diffie was born in 1944 and graduated from
MIT in Boston in 1965. After his graduation, he was employed in the field of
cybersecurity and later became one of the most authentic independent
cryptographers of the 1970s. He has been described as cyberpunk, in honor of
the new wave science fiction movement of the 1960s and 1970s, where
cybernetics, artificial intelligence, and hacker culture combined into a
dystopian futuristic setting that tended to focus on a combination of low life
and high tech.Back in the 1960s, the US Department of Defense began
funding a new advanced program of research in the field of communication
called Defense Advanced Research Projects Agency (DARPA), also called
ARPA. The main ARPA project was to connect military computers to create
a more resilient grade of security in telecommunications. The project
intended to prevent a blackout of communications in the event of a nuclear
attack, but also, the network allowed dispatches and information to be sent
between scientists, as well as calculations that had been performed, to exploit
the spare capacity of the connected computers. ARPANET started officially
in 1969 with the connection of only four sites and grew quickly so much that
in 1982, the project spawned the internet. At the end of the 1980s, many
regular users were connected to the internet, and thereafter their number

exploded.While ARPANET was growing, Diffie started to think that one day,
everyone would have a computer, and with it, exchange emails with each
other. He also imagined a world where products could be sold via the internet
and real money was abandoned in favor of credit cards. His great
consideration of privacy and data security led to Diffie being obsessed with
the problem of how to communicate with others without having any idea who
was at the opposite end of the cable. Moreover, encrypting messages and
documents is often done when sending highly valuable information; data
encryption was starting to be used by the general public to hide information
and share secrets with others. This was the time when the usage of
cryptography became common, and it was not just for the military,
governments, or academics.The main issue to solve was that if two perfect
strangers meet each other via the internet, how would it be possible to
encrypt/decrypt a shared document without exchanging any additional
information except for the document itself, which is encrypted/decrypted
through mathematical parameters? This is the key exchange problem in a
nutshell.One day in 1974, Diffie went to visit IBM's Thomas Watson
laboratory, where he was invited to give a speech. He spoke about various
strategies for attacking the key distribution problem but the people in the
room were very skeptical about his solution. Only one shared his vision: he
was a senior cryptographer for IBM who mentioned that a Stanford professor
had recently visited the laboratory and had a similar vision about the
problem. This man was Martin Hellman.Diffie was so enthusiastic that the
same evening, he drove to the opposite side of America to Palo Alto,
California to visit Professor Hellman. The collaboration between Diffie and
Hellman will remain famous in cryptography for the creation of one of the
most beautiful algorithms in the field: the Diffie-Hellman key
exchange.We'll analyze this pioneering algorithm in the next section.

The Diffie-Hellman algorithm
To understand the Diffie-Hellman (D-H) algorithm, we can rely on the so-
called thought experiments or mental representation of a theory often used by
Einstein.A thought experiment is a hypothetical scenario where you mentally
transport yourself to a more real situation than in the purely theoretical way
of facing an issue. For example, Einstein used a very popular thought
experiment to explain the theory of relativity. He used the metaphor of a

moving train observed by onlookers from different positions, inside and
outside of the train.I will often apply these mental figurative representations
in this book.Let's imagine that we have our two actors, Alice and Bob, who
want to exchange a message (on paper) but the main post office in the city
examines the contents of all letters. So, Alice and Bob struggled a lot with
different methods to send a letter secretly while avoiding any intrusion; for
example, putting a key inside a metallic cage and sending it to Bob. But
because Bob wouldn't have the key to open the cage, Alice and Bob would
have to meet somewhere first so that Alice could give the key to Bob. Again,
we return to the problem of exchanging keys.After many, many attempts, it
seemed to be impossible to arrive at a logical solution that would solve this
problem, but finally, one day, Diffie, with Hellmann's support, found the
solution, about which Hellmann later said, "God rewards fools!"Let's explore
a mental representation of what Alice and Bob should do to exchange the
key:

Step 1: Alice puts her secret message inside a metallic box closed with
an iron padlock and sends it to Bob, but holds on to the key herself.
Now, remember that Alice locks the box using her key and doesn't give
it to Bob.
Step 2: Bob applies one more lock to the cage using his private key and
resends the box to Alice. So, after Bob has received the box for the first
time, he can't open it. He just adds one more lock to the box.
Step 3: When Alice receives the box the second time, she is free to
remove her padlock since the box remains secured with Bob's key, as
shown in the following diagram, when Alice resends the box for the last
time. Remember that the message is always inside the box. Right now,
the box is only locked with Bob's padlock.
Step 4: When Bob receives the box this time, he can open it, because the
box only remains locked with his padlock. Finally, Bob can read the
content of the message sent by Alice that has been preserved inside the
box.

As you can see, Alice and Bob never met each other to exchange any padlock
keys. Note that in this example, the box was sent twice from Alice to Bob,
while in the algorithm, it is not:

Figure 3.1 – The D-H algorithm using the Alice and Bob example

The preceding explanation and representation are not exactly what the
algorithm does, but it provides a practical solution to a problem believed
unsolvable: the key exchange problem.Now, we have to transpose this
practical argumentation into a logical-mathematical representation. First of
all, we will return to using modular mathematics while taking advantage of
some particular properties of the operations made in finite fields.

The discrete logarithm

I will try to explain the math behind cryptography without using excessive
notations, just because I don't want you to get confused, or to load this book
with heavy mathematical dissertations. It's not within the scope of this

book.When we talk about finite fields, we are considering a finite group of
(n) integer numbers, (Z), laying in a ring – let's say, (Zn). This group of
numbers will be subjected to all the same mathematical laws, such as
operations with standard integers. Since we are working in a finite field
called (modulo n) here, we have to consider some critical issues that involve
modular mathematics. As we saw in the previous chapter, operating in
modulus means wrapping back to the first number each time we arrive at the
end of the set. This is just like the clock's math, where we wrap back to 1
when we reach 12.Essentially, remember that in a finite field, there is a
numerical period in which the numbers and the results of the operations of
the field recur. For example, if we have a set of seven integers, {0, 1, 2, 3, 4,
5, 6}, often abbreviated as (Z7), we have all the operations that have been
performed inside this finite field wrapping back inside the integers of the
field.Here is a short example of operations within a finite field, (Z7, +, x), of
addition and multiplication. Since all the operations, (modulo 7), will work,
we have to consider that the numbers will wrap back to 0 each time the
operation exceeds the number
7: 1 x 1 ≡ 1 (mod 7)2 x 4 ≡ 1 (mod 7)3 + 5 ≡ 1 (mod 7)3 x 5 ≡ 1 (mod 7)
let's use this modality of counting and consider that the = notation is
equivalent to ≡, which is the mathematics we learned at elementary school,
where 2 + 2 = 4 doesn't properly work if we consider, for example, a finite
field of modulo 3: 2 + 2 ≡ 1 (mod 3) From high school mathematics, we
recall that the [log a(z)] logarithm is a function where (a) is the base. We
have to determine the exponent to give to (a) to obtain the number (z). So, for
example, if a = 10 and z = 100, we find that the logarithm is 2 and we say
that logarithm base 10 of 100 is 2. If we use Mathematica to calculate a
logarithm, we have to compose a different notation, that is, Log[10, 100]=
2.While working in the discrete field, things became more complicated, so
instead of using a normal logarithm, we started working with a discrete
logarithm.So, let's say we have to solve an equation like
this: a^[x] ≡ b (mod p) This would be a very hard problem, even if we
know the value of (a) and (b), because there is no efficient algorithm known
to solve the discrete logarithm, that is, [x].

Important Note

I have used square brackets to say that [x] is secret. Technically [x]

is a discrete power, but the problems of searching for discrete
logarithm and discrete power have the same computational
difficulty.

Let's go a little bit deeper now to explain the dynamics of this operation. Let's
consider computing the following: 2^4 ≡ (x) (mod 13) First, we calculate
2^4 = 16, then divide 16:13 = 1 by the remainder of 3 so that x = 3. The
discrete logarithm is just the inverse operation: 2^[y] ≡ (x) (mod 13) In
this case, we have to calculate [y] while knowing the base is 2. It's possible to
demonstrate that there are infinite solutions for [y] that generate (x).Taking
the preceding example, we have the
following: 2^[y] ≡ 3 (mod 13) for [y] One solution is y = 4, but it is not
the only one.The result of 3 is also satisfied for all the integers, (n), of this
equation: [y] = [y + (p-1)*n] Let's prove n =
1: 2^[4+(13-1)*1] ≡ 2^16 (mod 13) 2^16 ≡ 3 (mod 13) But it is also
valid for n =
2: 2^[4 +(13-1)*2] ≡ 2^28 (mod 13) 2^28 ≡ 3 (mod 13) And so
on…Hence, the equation has infinite solutions for all the integers; that is, (n
≥ 0): [y] ≡ 2^[4 + 12 n] (mod 13) There is no method yet for solving the
discrete logarithm in polynomial time. So, in mathematics, as in
cryptography, this problem is considered very hard to solve, even if the
attacker has a lot of computation power.Finally, we have to introduce the
definition and the notation of a generator, (g), which is a particular number
where we say that (g) generates the entire group, (Zp). If (p) is a prime
number, this means that (g) can take on any value between 1 and p-1.

Explaining the D-H algorithm

D-H is not exactly an asymmetric encryption algorithm, but it can be defined
properly as a public/private key algorithm. The difference between
asymmetric and public/private keys is not only formal but substantial. You
will understand the difference better later, in the RSA section, which covers a
pure asymmetric algorithm. Instead, D-H gets a shared key, which works to
symmetrically encrypt the message, [M].The encryption that's performed
with a symmetric algorithm is combined with a D-H shared key transmission
to generate the cryptogram,
C: Symmetric-Algorithm E((D-H[k]), M) = C In other words, we use the

D-H algorithm to generate the shared secret key, [k], then with AES or
another symmetric algorithm, we encrypt the message, [M].D-H doesn't
directly encrypt the secret message; it can only determine a shared key
between two parties. This is a critical point, as we will see in the next
paragraph.However, for working in discrete fields and applying a discrete
logarithm problem to shield the key from attackers when sharing it, Diffie
and Hellman implemented one of the most robust and famous algorithms in
cryptography.Let's see how D-H works:

Step 1: Alice and Bob first agree on the parameters: (g) as a generator in
the ring, (Zp), and a prime number, p (mod p).
Step 2: Alice chooses a secret number, [a], and Bob chooses a secret
number, [b].

Alice calculates A ≡ g^a (mod p) and Bob calculates B ≡ g^b (mod p).

Step 3: Alice sends (A) to Bob and Bob sends (B) to Alice.
Step 4: Alice computes ka ≡ B^a (mod p) and Bob computes kb ≡ A^b
(mod p).

[ka = kb] will be the secret that's shared key between Alice and Bob.The
following is a numerical example of this algorithm:

Step 1: Alice and Bob agree on the parameters they will use; that is, g =
7 and (mod 11).
Step 2: Alice chooses a secret number, (3), and Bob chooses a secret
number, (6).

Alice calculates 7^3 (mod 11) ≡ 2 and Bob calculates 7^6 (mod 11) ≡ 4.

Step 3: Alice sends (2) to Bob and Bob sends (4) to Alice.
Step 4: Alice computes 4^3 (mod 11) ≡ 9 and Bob computes 2^6 (mod
11) ≡ 9.

The number [9] is the shared secret key, [k], of Alice and Bob.

Analyzing the algorithm

In Step 2 of the algorithm, Alice calculates A ≡ g^a (mod p) and Bob
calculates B ≡ g^b (mod p). Alice and Bob have exchanged (A) and (B), the
public parameters of the one-way function. A one-way function has this name
because it is impossible, (-x%), to return from the public parameter, (A), to
calculate the secret private key, [a] (and the same for (B) with [b]), for the
robustness of the discrete logarithm (see the The discrete logarithm
section).Another property of the modular powers is that we can write B^a
and A^b (mod p), as
follows: B ^a ≡ (g^b)^a (mod p)A ^b ≡ (g^a)^b (mod p) So, for the
property of modular exponentiations, we have the
following: g^(b*a) ≡ g^(a*b) (mod p) For example, we have the
following:

Alice: (7^6)^3 ≡ 7^(6*3) ≡ 9 (mod 11)
Bob: (7^3)^6 ≡ 7^(3*6) ≡ 9 (mod 11)

This is the mathematical trick that makes it possible for the D-H algorithm to
work.Now that we have understood the algorithm, let's highlight its defects
and the possible attacks that can be performed on it.

Possible attacks and cryptanalysis on the D-H algorithm

The most common attack that's performed on the D-H algorithm is the man-
in-the-middle (MiM) attack.A MiM attack is when the attacker infiltrates a
channel of communication and spies on it, blocks, or alters the
communication between the sender and the receiver. Usually, the attack is
accomplished by Eve (the attacker) pretending to be one of the two true
actors in the conversation:

Figure 3.2 – Eve is the “man in the middle”

Recalling what happened in Step 3 of the D-H algorithm, Alice and Bob
exchanged their public parameters, (A) and (B).Here, Alice sends (A) to Bob,
then Bob sends (B) to Alice.Now, Eve (the attacker) interferes within the
communication by pretending to be Alice.So, a MiM attack looks like this:

Step 3: Alice sends (A) to Bob and Bob sends (B) to Alice.
Here, we have the MiM attack: Eve sends (E) to Bob and then Bob
sends (B) to Eve, assuming it is Alice.

Let's analyze Alice's function, A ≡ g^a (mod p) and Bob's function B ≡ g^b
(mod p). This passage would be crucial if it was done in normal arithmetic
and not in finite fields. There is another possible attack, also known as the
birthday attack, which is one of the most famous attacks performed on
discrete logarithms. It is consolidated that among a group of people, at least
two of them will share a birthday so that in a cyclic group, it will be possible
to find some equal values (collisions) to solve a discrete logarithm.

Important Note

(E) here represents Eve's public parameter, which has been
generated by her private key, not encryption.

Proceeding with the final part of the algorithm, you can see the effects of the
MiM trick.Suppose that Alice and Bob are using D-H to generate a shared
private key to encrypt the following message:Alice's message: Bob, please
transfer $10,000.00 to my account number 1234567.After Step 3, in which
Bob and Eve (pretending to be Alice) have exchanged their public
parameters, Eve sends the modified message to Bob (intercepted from Alice),
which has been encrypted with the shared key.Suppose, the encrypted
message from Eve is bu3fb3440r3nrunfjr3umi4gj57*je.Bob receives the
preceding encrypted message (supposedly from Alice) and decrypts it with
the D-H shared key, obtaining some plaintext.Eve's modified message after
the MiM attack is Bob, please transfer $10,000.00 to my account number
3217654.As you will have noticed, the account number is Eve's account. This
attack is potentially disruptive.Analyzing the attack, Step 3 is not critical (as
we have said) because (A) and (B) have been communicated in clear mode,
but the question is: how can Bob be sure that (A) is coming from Alice?The
answer is, by using the D-H algorithm, Bob can't be sure that (A) comes from
Alice and not from Eve (the attacker); similarly, Alice can't know that (B)
comes from Bob either. In the absence of additional information about the
identity of the two parties, relying only on the parameters received, the D-H
algorithm suffers from this possible substitution-of-identity attack called
MiMThis example shows the need for the sender (Alice) and the receiver
(Bob) to have a way to be sure that they are who they say they are, and that
their public keys, (A) and (B), do come from Alice and Bob, respectively. To
prevent the problem of a MiM attack and identify the users of the
communication channel, one of the most widely used techniques is a digital
signature. We will look at digital signatures in Chapter 4, Introducing Hash
Functions and Digital Signatures, which is entirely dedicated to explaining
these cryptographic methods.Moreover, it's possible for a public/private
algorithm to identify the parties and overcome the MiM attack. In Part 4 of
this book, I will show you some public/private key algorithms of the new
generation that, although not asymmetric, have multiple ways to be
signed.Finally, a version of D-H can be implemented using elliptic curves.
We will analyze this algorithm in Chapter 7, Elliptic Curves.

RSA
Among the cryptography algorithms, RSA shines like a star. Its beauty is

equal to its logical simplicity and hidden inside is such a force that after 40
years, it's still used to protect more than 80 percent of commercial
transactions in the world.Its acronym is made up of the names of its three
inventors – Rivest, Shamir, and Aldemar. RSA is what we call the perfect
asymmetric algorithm. Actually, in 1997, the CESG, an English cryptography
agency, attributed the invention of public-key encryption to James Allis in
1970 and the same agency declared that in 1973, a document was written by
Clifford Cocks that demonstrates a similar version of the RSA algorithm.The
essential concept of the asymmetric algorithm is that the keys for encryption
and decryption are different.Recalling the analogy to padlocks I made in the
The Diffie-Hellman algorithm section, when I described the D-H algorithm,
we saw that anybody (not just Alice and Bob) could lock the box with a
padlock. This is the true problem of MiM because the padlock can't be
recognized as specifically belonging to Bob or Alice.To overcome this
problem, another interesting mental experiment can be done using a similar
analogy but making things a little different.Suppose that Alice makes many
copies of her padlock, and she sends these copies to every postal office in the
country, keeping the key that opens all the padlocks in a secret place.If Bob
wishes to send a secret message to Alice, he can go to a postal office and ask
for Alice's padlock, put the message inside the box, and lock it.In this way,
Bob (the sender), from the moment he locks the box, will be unable to unlock
it, but when Alice receives the box, she will be able to open it with her
unique secure key.Basically, in RSA (as opposed to D-H), Bob encrypts the
message with Alice's public key. After the encryption process, even Bob is
unable to decrypt the message, while Alice can decrypt it using her private
key.This was the step that transformed the concept of asymmetric encryption
from mere theory to practical use. RSA discovered how to encrypt a message
with the public key of the receiver and decrypt it with the private key. To
make that possible, RSA needs a particular mathematic function that I will
explain further later on when we explore the algorithm in detail.As we
mentioned previously, there were three inventors of this algorithm. They
were all researchers at MIT, Boston, at the time. We are talking about the late
1970s. After the invention of the D-H algorithm, Ronald Rivest was
extremely fascinated by this new kind of cryptography. He first involved a
mathematician, Leonard Adleman, and then another colleague from the
Computer Science department, Aid Shamir, who joined the group. What
Rivest was trying to achieve was a mathematical way to send a secret

message encrypted with a public key and decrypt it with the private key of
the receiver. However, in D-H, the message can only be encrypted once the
key has been exchanged, using the same shared key. Here, the problem was
to find a way to send the message that had been encrypted with a public key
and decrypted through the private key. But as I've said, it needed a very
particular inverse mathematical function. This is the real added value of the
RSA invention that we are going to discover shortly.The tale of this
discovery, as Rivest told it, is funny. It was April 1977 when Rivest and
Adleman met at the home of a student for Easter. They drank a little too
much wine and at about midnight, Rivest went back home. He started to think
over the problem that had been tormenting him for almost a year. Laying on
his bed, he opened a mathematics book and discovered the function that
could be perfect for the goal that the group had.The function he found was a
particular inverse function in modular mathematics related to the
factorization problem.As I introduced in Chapter 1, Deep Diving into
Cryptography, the problem of factorizing a large number made by
multiplying two big prime numbers is considered very hard to solve, even for
a computer with immense computation power.

Explaining RSA

To understand this algorithm, we will consider Alice and Bob exchanging a
secret message.Let's say that Bob wants to send a secret message to Alice,
given the following:

M: The secret message
e: A public parameter (usually a fixed number)
c: The ciphertext or cryptogram
p, q: Two large random prime numbers (the private keys of Alice)

The following is the public and private key generation. As you will see, the
core of RSA (its magic function) is generating Alice's private key, [d].Key
generation:Alice's public key, (N), is given by the following
code: N = p*q As we mentioned earlier, multiplying two big prime numbers
makes (N) very difficult to factorize, and makes it generally very difficult for
an attacker to find [p] and [q]. Alice's private key, [d], is given by the
following code: [d] * e ≡ 1 (mod[p-1]*[q-1]) Bob performs the

encryption: c ≡ M^e (mod N) Bob sends the ciphertext, (c), to Alice. She can
now decrypt (c) using her private key, [d]: c^d ≡ M (mod N) And that's it!

Note

The bold elements – M, d, p, and q – in the algorithm are protected
and secret.

Numerical example: M = 88e = 9007p = 101q = 67N = 6767 Step 1: Bob's
encryption is as follows: 88^9007 ≡ 6621 (mod 6767) Alice receives a
cryptogram, that is, c = 6621.Step 2: Alice's decryption is as
follows: 9007* d ≡ 1 (mod (101-1)*(67-1))d = 39436621^3943 ≡ 88 (mod 6767)
you can see, the secret message, [M] = 88, comes back from Alice's private
key, [d] = 3943.

Analyzing RSA

There are several elements to explain but the most important is to understand
why this function, which is used for decrypting (c) and obtaining [M], works:
M ≡ c^[d] (mod N) This is Step 2; that is, the decryption function. I have
just inverted the notation by putting [M] on the left. The reason it works is
hidden in the key generation equation: [d] * e ≡ 1 (mod [p-1]*[q-1]) [d]
is Alice's private key. For Euler's theorem, the function will probably be
verified because the numbers [p] and [q] are very big and [M] is probably a
co-prime of (N). If this equation is verified, then we can rewrite the
encryption stage as follows: (M^e)^d (mod N) For the properties of the
powers and Euler's theorem, we have the
following: M^(e*d) (mod N)de ≡ 1 (mod (p-1)*(q-1)) That is the same as
writing M^1 = M (mod N). So, by inserting [d] inside the decryption stage,
Alice can obtain [M].

Conventional attacks on the algorithm

All the attacks that will be explained in the first part of this section are
recognized and well known. That is why we are talking about conventional
attacks on RSA.The first three methods of attack on RSA are related to the
(mod N) public parameter. To perform an attack on N = p*q, the attacker

could do the following:

Use an efficient algorithm of factorization to discover p and q.
Use new algorithms that, under certain conditions, can find the numbers.
Use a quantum computer to factorize N (in the future).

Let's analyze the following three cases:

In the first case, an efficient algorithm of factorization is not yet known.
The most common methods are as follows:
The general number field sieve algorithm
The quadratic sieve algorithm
The Pollard algorithm
In the second case, if (n) is the number of digits of N = p*q and the
attacker knows the first (n/4) digits or the last (n/4) digits of [p] or [q],
then it will be possible to factorize (N) in an efficient way. Anyway,
there is a very remote possibility of knowing it. For example, if [p] and
[q] have 100 digits and the first (or the last) 50 digits of [p] are known,
then it's possible to factorize N.

For more information, you can refer to Coppersmith's method of
factorization. More cases related to Coppersmith attacks, as explained later in
this section, are where the exponents, (e) or [d], and even the plaintext, [M],
are too short.

If an attacker uses a quantum computer, it will be theoretically possible
to factorize N in a short time with Shor's algorithm, and I am convinced
that in the future, other, more efficient quantum algorithms will arise. I
will explain this theory in more detail in Chapter 8, Quantum
Cryptography, where we talk about quantum computing and Q-
cryptography.

Finally, if we have a very short piece of plaintext, [M], and even the
exponent, (e), is short, then RSA could be breakable. This is because the
power operation, M^e, remains inside modulo N. So, in this phase of
encryption, let's say we have the following: M^e < N Here, it's enough to use
the e-th root of (c) to find]M[.

Important Note

I have used open brackets,]M[, to denote that the message has
been decrypted.

Numerical example: M = 2e = 3N = 772^3 ≡ 8 (mod 77) Since e = 3, by
performing a simple cubic root, √, we can obtain the message in
cleartext: 8^(1/3) = 2 Here, we are working in linear mathematics and no
longer in modular mathematics.A way to overcome this problem is to
lengthen the message by adding random bits to it. This method is very
common in cryptography and cybersecurity and is known as padding.There
are different ways to perform padding, but here, we are talking about bit
padding. As we covered in Chapter 1, Deep Diving into Cryptography, we
can use ASCII code to convert text into a binary system, so the message, [M],
is a string of bits. If we add random bits (usually at the end, though they
could also be added at the start), we will obtain something like
this: ... | 1011 1001 1101 0100 0010 0111 0000 0000 | As you can see,
the bold digits represent the padding.This method can be used to pad
messages that are any number of bits long, not necessarily a whole number of
bytes long; for example, a message of 23 bits that is padded with 9 bits to fill
a 32-bit block.Now that we are more familiar with RSA and modular
mathematics properties, we'll explore the first interesting application that was
implemented with this algorithm.

The application of RSA to verify international treaties

Let's say that Nation Alpha wants to monitor seismic data from Nation Beta
to be sure that they don't experiment with any nuclear bombs in their
territory. A set of sensors has been installed on the ground of Nation Beta to
monitor its seismic activity, recorded, and encrypted. Then, the output data is
transmitted to Nation Alpha, let's say, via a satellite.This interesting
application of RSA works as follows:

Nation Alpha, (A), wants to be sure that Nation Beta, (B), doesn't
modify the data.
Nation Beta wants to check the message before sending it (for spying
purposes).

We name the data that's collected from the sensors [x]; so, the protocol works
as follows:Key generation:

Alpha chooses the parameters, (N= p*q), as the product of two big
prime numbers, and the (e) parameter.
Alpha sends (N, e) to Beta.
Alpha keeps the private key, [d], secret.

The protocol for threat verification on atomic experiments is developed as
follows:

Step 1: A sensor located deep in the earth collects data, [x], performing
encryption using the private key, [d]:

x^d ≡ y (mod N)

Step 2: Initially, both the (x) and (y) parameters are sent by the sensor to
Beta to let them verify the truthfulness of the information. Beta checks
the following:

y^e ≡ x (mod N)

Step 3: After the positive check, Beta forwards (x, y) to Alpha, who can
control the result of (x):

x ≡ y^e (mod N)

Important Note

(x) is the collected set of data from the sensor, while [d] is the
private key of Alpha stored inside the protected software sensor
that collects the data.

This encryption is performed in the opposite way to how RSA
usually works.

If the y^e ≡ x (mod N) equation is verified, Alpha can be confident that the
data that's been sent from Beta is correct and they didn't modify the message
or manipulate the sensor. That's because the encrypted message, (x),

corresponding to the cryptogram, (y), can truly be generated by only those
who know the private key, [d].If Beta has previously attempted to manipulate
the encryption inside the box that holds the sensor by changing the value of
(x), then it will be very difficult for Beta to get a meaningful message.As we
mentioned previously, in this protocol, RSA is inverted, and the encryption is
performed with the private key, [d], instead of (e), the public parameter,
which is what normally happens.Essentially, the difficulty here for Beta in
modifying the encryption is to get a meaningful number or message. Trying
to modify the cryptogram, (y), even if the (x) parameter is previously known,
has the same complexity to perform the discrete logarithm (which is a hard
problem to solve, as we have already seen).We visualize the process by
referring to the following diagram:

Figure 3.3 – The sensor buried underground with the data transmitted via
satellite

Now that we've learned how to use the international treaties that are
performed with the RSA algorithm, I want to introduce a section that will be
discussed later in Chapter 6, New Algorithms in Public/Private Key
Encryption, related to unconventional attacks on the RSA algorithm and its
most famous library, OpenSSL.

Unconventional attacks

I have called these algorithms unconventional because they have been
implemented by me and not tested and published until now. We will see as
we continue through this book, these unconventional attacks against RSA are
even valid for other asymmetric encryption algorithms. These unconventional
attacks, implemented between 2011 and 2014, have the scope to recover the
secret message, [M], without knowing Alice's decryption key, [d], and the
prime secret numbers, [p] and [q], behind (N). I will showcase these
unconventional attacks here in this section, but I will present these methods
in more detail in Chapter 6, New Algorithms in Public/Private Key
Encryption.Among these algorithms, we have some attacks that are used
against RSA, but they can be transposed to most of the asymmetric
algorithms covered in this chapter.A new algorithm that could break the
factorization problem in the future is NextPrime. It derives from a genetic
algorithm discovered by a personal dear friend who explained the mechanism
to me in 2009, Gerardo Iovane. In his article, The Set of Prime Numbers,
Gerardo Iovane describes how it is possible to get all the prime numbers
starting from a simple algorithm, discarding the non-prime numbers from the
pattern.

Note

For a more accurate and thorough discussion of Gerardo Iovane's
genetic algorithm, you can read The Set of Prime Numbers at
https://arxiv.org/abs/0709.1539.

After years of work and many headaches, I have arrived at a mathematical
function that represents a curve; each position on this curve represents a
prime number, and between many positions lie the semiprimes (N) generated
by two primes. This curve geometrically represents all the primes of the
universe. It turns out that the position of (N) lies always in-between the
positions on the curve of the two prime numbers, [p] and [q], and (N) is
almost equidistant from their positions. It's also possible to demonstrate that
the prime numbers have a very clear order and are not randomly positioned
and disordered as believed.The distance between the two prime objects, [p]
and [q], of the multiplication that determines (N) is equivalent to the number
of primes lying between [p] and [q]. For example, the distance prime
between 17 and 19 is zero, the distance between 1 and 100 is 25, and the

https://arxiv.org/abs/0709.1539

distance between 10,000 and 10,500 is only 55. Right now, this algorithm is
only efficient under determinate conditions: for example, when [p] and [q]
are rather close to each other (at a polynomial distance). However, the
interesting thing is that it doesn't matter how big the two primes are. I did
some tests with this algorithm using primes of the caliber of 10^1,000
digits.Just to clarify how big such numbers are, you can consider that 10^80
represents the number of particles in the Universe. For instance, a semi-prime
with an order of 10^1,000 digits corresponds to RSA's public key length of
around 3,000 bits (one of the biggest public keys that's used in cryptography
right now). It could be processed in an elapsed time of a few seconds using
the NextPrime algorithm if the two primes are close to each other.At the time
of writing this book, I am working on a version of the NextPrime algorithm
based on a quantum computer. It could be the next generation of quantum
computing factorization algorithms (similar to the Shor algorithm, which we
will look at in Chapter 8, Quantum Cryptography).Now, let's continue to
analyze how else it is possible to attack RSA. As shown in the following
diagram, there are two points of attack in the algorithm: one is the
factorization of (N), while the other is the discrete power, [M^e]:

Figure 3.4 – Points where it is possible to attack RSA

Most of the conventional analysis of cryptologists is focused on factorizing
(N), as we have seen. But RSA suffers not only from the factorization
problem; there is also another problem linked to the exponent, (e), which we
will see in Chapter 6, New Algorithms in Public/Private Key Cryptography.

These methods are essentially backdoors that can recover the message, [M],
without knowing the secret parameters of the sender: [d], [p], and [q]. What
we will understand in Chapter 6, New Algorithms in Public/Private Key
Cryptography, when we analyze these methods of attack, is that they are
equivalent to creating a backdoor inside the RSA algorithm and its main
library, OpenSSL. The RSA paradigm that we've already examined states that
Bob (the sender) cannot return the message once it has been delivered.
However, if we apply those unconventional methods to break RSA, this
paradigm is no longer valid. Bob can create his "fake encryption" by
himself to return the message, [M], encrypted with Alice's public key, while
the fake cryptogram can be decrypted by Alice using RSA's decryption stage.
Is this method an unreasonable model, unrepresentative of practical
situations, or does it have practical uses?I will leave the answer to this for
Chapter 6, New Algorithms in Public/Private Key Cryptography. Now, let's
explore another protocol based on the RSA implementation that has become a
popular piece of software: PGP.

PGP
Pretty Good Privacy (PGP) is probably the most used cryptographic
software in the world.PGP was implemented by Philip Zimmermann during
the Cold War. Philip started planning to take his family to New Zealand
because he believed that, in the event of a nuclear attack, the country, so
isolated from the rest of the world, would be less impacted by atomic
devastation. At some point, while planning to move to New Zealand,
something changed his mind and he decided to remain in the US.To
communicate with his friends, Zimmermann, who was an anti-nuclear
activist, developed PGP to secure messages and files transmitted via the
internet. He released the software as open source, free of charge for non-
commercial use.At the time, cryptosystems larger than 40 bits were
considered to be like munitions. That is to say that cryptography is still
considered a military weapon. There is a requirement that you must obtain if
you decide to patent a new cryptosystem, you must have authorization from
the Department of Defense to publish it. This was a problem that was
encountered by PGP, which never used keys smaller than 128 bits. Penalties
and criminal prosecutions for violating this legal requirement are very severe,
which is why Zimmermann had a pending legal status for many years until

the American government decided to close the investigation and clear
him.PGP is not a proper algorithm, but a protocol. The innovation here is just
to merge asymmetric with symmetric encryption. The protocol uses an
asymmetric encryption algorithm to exchange the key, and symmetric
encryption to encrypt the message and obtain the ciphertext. Moreover, a
digital signature is required to identify the user and avoid a MiM attack.The
following are the steps of the protocol:

Step 1: The key is transmitted using an asymmetric encryption
algorithm (ElGamal, RSA).
Step 2: The key that's been transmitted with asymmetric encryption
becomes the session key for the symmetric encryption (DES (remember
that we have seen that is breackble now), Triple DES, IDEA, and AES –
we covered this in Chapter 2, Introduction to Symmetric Encryption).
Step 3: A digital signature is used to identify the users (we will look at
RSA digital signatures in Chapter 4, Introducing Hash Functions and
Digital Signatures).
Step 4: Decryption is performed using the symmetric key.

PGP is a good protocol for very good privacy and for securing the
transmission of commercial secrets.

The ElGamal algorithm
This algorithm is an asymmetric version of the D-H algorithm. ElGamal aims
to overcome the problems of MiM and the impossibility of the signatures for
key ownership in D-H. Moreover, ElGamal (just like RSA) is an authentic
asymmetric algorithm because it encrypts the message without previously
exchanging the key.The difficulty here is commonly related to solving the
discrete logarithm. As we will see later, there is also a problem related to
factorization.ElGamal is the first algorithm we'll explore that presents a new
element: an integer random number, [k], that's chosen by the sender and kept
secret. It's an important innovative element because it makes its encryption
"ephemeral," in the sense that [k] makes the encryption function
unpredictable. Moreover, we will frequently see this new element related to
the zero-knowledge protocol in Chapter 5, Introduction to Zero-Knowledge
Protocols.Let's look at the implementation of this algorithm and how it is

used to transmit the secret message, [M].Alice and Bob are always the two
actors. Alice is the sender and Bob is the receiver.The following diagram
shows the workflow of the ElGamal algorithm:

Figure 3.5 – Encryption/decryption of the ElGamal algorithm

As shown in the last step of Bob's decryption, we can see an inverse
multiplication in (mod p). This kind of operation is essentially a division
that's performed in a finite field. So, if the inverse of A is B, we have A*B =
1 (mod p). The following example shows the implementation of this inverted
modular function with Mathematica.Now, having explained the algorithm,
let's look at a numerical example to understand it.Publicly defined
parameters:The public parameters are p (a large prime number) and g (a
generator): p = 200003g = 7 Key generation:Alice chooses a random
number, [k], and keeps it secret.k = 23 (Alice's private key).Bob computes
his public key, (B), starting from his private key, [b]:b = 2367 (Bob's private
key): B ≡ 7^2367 (mod 200003)B = 151854 Alice's encryption:Alice
generates a secret message, [M]: M = 88 Then, Alice computes (y1, y2), the
two public parameters that she will send to

Bob: y1 ≡ 7^23 (mod 200003)y1 = 90914y2 ≡ 88 * 151854^ 23 (mod 200003)y2 = 161212
sends the parameters to Bob (y1 = 90914; y2 = 161212).Bob's
decryption:First, Bob computes (Kb) by taking y1 = 90914, which is
elevated to his private key, [b] =
2367: Kb ≡ 90914^2367 (mod 200003)Kb = 10923 Inverted Kb in (mod p)
[Reduce[Kb*x == 1, x, Modulus -> p] (performed with Wolfram
Mathematica): Inverted Kb ≡ 192331 (mod 200003) Finally, Bob can
return the message, [M].Bob takes (y2) and multiplies it by [Inverted Kb],
returning the message, [M]: y2* InvKb ≡ M (mod 200003) The final result is
the message [M]: 161212 * 192331 ≡ 88 (mod 200003). ElGamal
encryption is used in the free GNU Privacy Guard (GnuPG) software. Over
the years, GnuPG has gained wide popularity and become the de facto
standard free software for private communication and digital signatures.
GnuPG uses the most recent version of PGP to exchange cryptographic keys.
For more information, you can go to the web page of this software:
https://gnupg.org/software/index.xhtml.

Important Note

As I have mentioned previously, it's assumed that the underlying
problem behind the ElGamal algorithm is the discrete logarithm.
This is because, as we have seen, the public parameters and keys
are all defined by equations that rely on discrete logarithms.

For example, B ≡ g^b (mod p); Y1 ≡ g^k (mod p) and Kb ≡ y1^b
(mod p) are functions related to the discrete logarithm.

Although the discrete logarithm problem is considered to be the main
problem in ElGamal, we also have the factorization problem, as shown here.
Let's go back to the encryption function, (y2): y2 ≡ M*B^k (mod p) Here,
you can see that there is multiplication. So, an attacker could also try to arrive
at the message by factorizing (y2).This will be clearer if we reduce the
function: H ≡ B^k (mod p) Then, we have the
following: y2 ≡ M* H (mod p) This can be rewritten like
so: M ≡ y2/H (mod p) As you can see, (y2) is the product of [M*H]. If
someone can find the factors of (y2), they can probably find [M].

https://gnupg.org/software/index.xhtml

Summary
In this chapter, we analyzed some fundamental topics surrounding
asymmetric encryption. In particular, we learned how the discrete logarithm
works, as well as how some of the most famous algorithms in asymmetric
encryption, such as Diffie-Hellmann, RSA, and ElGamal, work. We also
explored an interesting application of RSA related to exchanging sensitive
data between two nations. In Chapter 4, Introducing Hash Functions and
Digital Signatures, we will learn how to digitally sign these algorithms.Now
that we have learned about the fundamentals of asymmetric encryption, it's
time to analyze digital signatures. As you have already seen with PGP, all
these topics are very much related to each other.

4 Hash Functions and Digital
Signature

Join our book community on Discord
https://packt.link/SecNet

Since time immemorial, most contracts, meaning any kind of agreement
between people or groups, have been written on paper and signed manually
using a particular signature at the end of the document to authenticate the
signatory. This was possible because, physically, the signatories were in the
same place at the moment of signing. The signatories could usually trust each
other because a third trustable person (a notary or legal entity) guaranteed
their identities as a super-party entity.Nowadays, people wanting to sign
contracts often don't know each other and frequently share documents to be
signed via email, signing them without a trustable third party to guarantee
their identities. Imagine that you are signing a contract with a third party and
will be sending it via the internet. Now, consider the third party as
untrustable, and you don't want to expose the document's contents to an
unknown person via an unsecured channel such as the internet. How is it
possible in this case to verify whether the signatures are correct and
acceptable? Moreover, how is it possible to hide the document's content and,
at the same time, allow a signature on the document?Digital signatures come
to our aid to make this possible. This chapter will also show how hash
functions are very useful for digitally signing encrypted documents so that
anyone can identify the signers, and at the same time, the document is not
exposed to prying eyes. In this chapter, we will cover the following topics:

https://packt.link/SecNet

Hash functions
Digital signatures with RSA and El Gamal
Blind signatures

So, let's start by introducing hash functions and their main scopes. Then we
will go deeper into categorizing digital signature algorithms.

A basic explanation of hash functions
Hash functions are widely used in cryptography for many applications. As we
have already seen in Chapter 3, Asymmetric Algorithms, one of these
applications is blinding an exchanged message when it is digitally signed.
What does this mean? When Alice and Bob exchange a message using any
asymmetric algorithm, in order to identify the sender, it commonly requires a
signature. Generally, we can say that the signature is performed on the
message [M]. For reasons we will learn later, it's discouraged to sign the
secret message directly, so the sender has to first transform the message [M]
into a function (M'), which everyone can see. This function is called the hash
of M, and it will be represented in this chapter with these notations: f(H) or
h[M].We will focus more on the relations between hashes and digital
signatures later on in this chapter. However, I have inserted hash functions in
this chapter alongside digital signatures principally because hash functions
are crucial for signing a message, even though we can find several
applications related to hash functions outside of the scope of digital
signatures, such as applications linked to the blockchain, like distributed hash
tables. They also find utility in the search engine space.So, the first question
we have is: what is a hash function?The answer can be found in the meaning
of the word: hash=to reduce into pieces, which in this case refers to the
contents of a message or any other information being reduced into a smaller
portion. Given an arbitrary-length message [M] as input, running a hash
function f(H), we obtain an output (message digest) of a determined fixed
dimension (M'). If you remember the bit expansion (Exp-function), seen in
Chapter 2, Introduction to Symmetric Encryption, this is conceptually close
to hashes. The bit expansion function works with a given input of bits that
has to be expanded. We have the opposite task with hash functions, where the
input dimension is bigger than the hash's bit value.We call a hash function (or
simply a hash) a unidirectional function. We will see later that this property

of being one-way is essential in classifying hash functions. Being a
unidirectional or one-way function means that it is easy to calculate the result
in one direction, but very difficult (if not impossible) to get back to the
original message from the output of the function.Let's see the properties
verified in a hash function:

Given an input message [M], its digest message h(M) can be calculated
very quickly.
It should be almost impossible (-%) to come back from the output (M')
calculated through h(M) to the original message [M].
It should be computationally intractable to find two different input
messages [m1] and [m2], such that:

h(m1) = h(m2) In this case, we can say that the f(h) function is strongly
collision-free.To provide an example of a hash function, if we want the
message digest of the entire content of Wikipedia, it becomes a fixed-length
bit as follows:

Figure 4.1 – Example of hash digest

Another excellent metaphor for hash functions could be a funnel mincer like
the following, which digests plaintext as input and outputs a fixed-length
hash:

Figure 4.2 – Hash functions symbolized by a "funnel mincer"

The next question is: why and where are hash functions used?Recalling what
we said at the beginning of this Chapter, in cryptography, hash functions are
widely used for a range of different scopes:

Hash functions are commonly used in asymmetric encryption to avoid
exposing the original message [M] when collecting digital signatures on
it (we will see this later in this chapter). Instead, the hash of the original
message proves the identity of the transmitter using (M') as a surrogate.
Hashes are used to check the integrity of a message. In this case, based
on the digital hash of the original message (M'), the receiver can easily
detect whether someone has modified the original message [M]. Indeed,
by changing only 1 bit among the entire content of the British
Encyclopedia [M], for example, its hash function, h(M), will have a
completely different hash value h(M') than the previous one. This
particularity of hash functions is essential because we need a strong
function to verify that the original content has not been modified.

Furthermore, hash functions are used for indexing databases. We will
see these functions throughout this book. We will use them a lot in the
implementation of our Crypto Search Engine detailed in Chapter 9,
Crypto Search Engine, and will also see them in Chapter 8, Quantum
Cryptography. Indeed, hash functions are candidates for being quantum
resistant, which means that hash functions can overcome a quantum
computer's attack under certain conditions.
The foundational concept of performing a secure hash function is that
given an output h(M), it is difficult to get the original message from this
output.

A function that respects such a characteristic is the discrete logarithm, which
we have already seen in our examination of asymmetric
encryption: g^[a] ≡ y (mod p) Where, as you may remember, given the
output (y) and also knowing (g), it is very difficult to find the secret private
key [a].However, a function like this the discrete logarithm seems to be too
slow to be considered for practical implementations, as well as weak. As you
have seen above, one of the particularities of hashes is to be quick to
calculate. As we have seen what hash functions are and their characteristics,
now we will look at the main algorithms that implement hash functions.

Overview of the main hash algorithms
Since a hash algorithm is a particular kind of mathematical function that
produces a fixed output of bits starting from a variable input, it should be
collision-free, which means that it will be difficult to produce two hash
functions for the same input value and vice versa.There are many types of
hash algorithms, but the most common and important ones are MD5, SHA-2,
and CRC32, and in this chapter, we will focus on the Secure Hash
Algorithm (SHA) family.Finally, for your knowledge, there is RIPEMD-
160, an algorithm developed by EU scientists in the early 1990s available in
160 bits and in other versions of 256 bits and 320 bits. This algorithm didn't
have the same success as the SHA family, but could be the right candidate for
security as it has never been broken so far. The SHA family, developed by
the National Security Agency (NSA), is the object of study in this chapter. I
will provide the necessary knowledge to understand and learn how the SHA
family works. In particular, SHA-256 is currently the hash function used in

Bitcoin as Proof of Work (PoW) when mining cryptocurrency. The process
of creating new Bitcoins is called mining; it is done by solving an extremely
complicated math problem, and this problem is based on SHA-256. At a high
level, Bitcoin mining is a system in which all the transactions are devolved to
the miners. Selecting one megabyte worth of transactions, miners bundle
them as an input into SHA-256 and attempt to find a specific output the
network accepts. The first miner to find this output receives a reward
represented by a certain amount of Bitcoin. We will look at the SHA family
in more detail later in this book, but now let's go on to analyze at a high level
other hash functions, such as MD5.We can start by familiarizing ourselves
with hash functions, experimenting with a simple example of an MD5
hash.You can try to use the MD5 Generator to hash your files. My name
converted into hexadecimal notation with MD5 is as follows:

Figure 4.3 – MD5 hash function example

As I told you before, the MD family was found to be insecure. Attacks
against MD5 have been demonstrated, valid also for RIPEMD, based on
differential analysis and the ability to create collisions between two different
input messages.So, let's go on to explore the mathematics behind hash
functions and how they are implemented.

Logic and notations to implement hash functions

This section will give you some more knowledge about the operations
performed inside hash functions and their notations.Recalling Boolean logic,

I will outline more symbols here than those already seen in Chapter 2,
Introduction to Symmetric Encryption, and shore up some basic concepts.
Operating in Boolean logic means, as we saw in Chapter 2, Introduction to
Symmetric Encryption, performing operations on bits. For instance, taking
two numbers in decimal notation and then transposing the mathematical and
logical operations on their corresponding binary notations, we get the
following results:

X ^ Y = AND logical conjunction – this is a bitwise multiplication
(mod 2). So, the result is 1 when both the variables are 1, and the result
is 0 in all other cases:

X=60 —————-—> 00111100Y=240 ————-—> 11110000AND= 48————-> 00110000

X V Y = OR logical disjunction – a bitwise operation (mod 2) in which
the result is 1 when we have at least 1 as a variable in the operation, and
the result is 0 in other cases:

X=60 —————-—> 00111100Y=240 ——————> 11110000OR = 252 ———> 11111100

X Y = XOR bitwise sum (mod 2) – we have already seen the XOR
operation. XOR means that the result is 1 when bits are different, and
the result is 0 in all other cases:

a=60 —————-—> 00111100b=240 ——————> 11110000XOR=204 ————> 11001100

operations useful for implementing hash functions are the following:

¬X: This operation (the NOT or inversion operator ~) converts the bit 1
to 0 and 0 to 1.

So, for example, let's take the following binary string: 01010101 It will
become the following: 10101010

X << r: This is the shift left bit operation. Thsis operation means to shift
(X) bits to the left of r positions.

In the following example, you can see what happens when we shift to the left
by 1 bit:

Figure 4.4 – Scheme of the shift left bit operation

So, for example, we have decimal number 23, which is 00010111 in byte
notation. If we do a shift left, we get the following:

Figure 4.5 – Example of the shift left bit operation (1 position)

The result of the operation after the shift left bit is (00101110)2 = 46 in
decimal notation.

X >> r: This is the shift right bit operation. This is a similar operation as
the previous, but it shifts the bits to the right.

The following diagram shows the scheme of the shift right bit operation:

Figure 4.6 – Scheme of the shift right bit operation (1 position)

As before, let's consider this for the decimal number 23, which is 00010111
in byte notation. If we do a shift right bit operation, we will get the decimal
number 11 as the result, as you can see in the following example:

Figure 4.7 – Example of the shift right bit operation (1 position)

Xr: This is left bit rotation. This operator (also represented as <<<)
means a circular rotation of bits, similar to shift, but with the key
difference here that the initial part becomes the final part. It's used in the
SHA-1 algorithm to rotate the variables A and B, respectively, by 5 and
30 positions (A<<<5; B<<<30) as will be further explained in the
following section.

Figure 4.8 – Scheme of left bit rotation (1 position)

If we apply left bit rotation to our example of the number 23 as expressed in
binary notation, we get the following:

Figure 4.9 – Example of left bit rotation

In this case, the result of the left bit rotation operation is the same as the shift
left bit operation: (00101110)2 = 46. But, if we perform a right bit rotation,
we will get the following:

Figure 4.10 – Example of right bit rotation

In this case, the result of the operation is (10001011)2 = 139 expressed in
decimal notation.

This operator represents the modular sum (X+Y) (mod 2^32) and is
used in SHA to represent this operation, as you will see later in our
examination of the SHA-1 algorithm (Figure 4.14).

After having analyzed the logic operators used to perform hash functions,
two more issues have to be considered in order to implement hash functions:

In SHA, for example, there are some constants (Kt) that go from 0 to n
(we will look at this in the following section).
The notations are generally expressed in hexadecimal.

Let's now see how the hexadecimal system works.It uses the binary numbers
for 0 to 9, consisting of 4 bits per number, for
example: 0= 00001= 00012= 0010………9= 1001 Then, from 10 to 16 we have
6 capital letters, A, B, C, D, E, F, to reach a total of 16 (hex)

numbers: A= 1010B= 1011……….F= 1111 For a better and clearer
understanding, in the following figure, you can see a comparison between the
binary, hexadecimal, and decimal systems:

Figure 4.11 – Comparison between binary, hexadecimal, and decimal
systems

The hexadecimal system is used to represent bytes, where 1 byte is an 8-digit
binary number.For example, 1 byte (8 bits) is expressed as (1111 0010)2 =
[F2]16 = 242.Now that we have the instruments to define a hash function,
let's go ahead and implement SHA-1, which is the simplest model in the SHA
family.

Explanation of the SHA-1 algorithm

Secure Hash Algorithm 1 (SHA-1) was designed by the NSA. Since 2005,
it has been considered insecure and was replaced by its successors, SHA-2
and SHA-3. In this section, we will examine SHA-1 simply as a case study to
better understand how hash functions are implemented.SHA-1 returns a 160-
bit output based on an iterative procedure. This concept will become clearer
in the next few lines. As for other hash functions, the message [m] made of
variable bit input, is broken into 512-bit fixed-length blocks: m=
[m1,m2,m3,....ml].In the last part of this section, you will see how an input
message [m] of 2,800 bits will be transformed into blocks [m1,m2,.....ml] of
512 bits each.The blocks are elaborated through a compression function f(H)
(it will be better analyzed later in Step 3 of the algorithm) that combines the
current block with the result obtained in the previous round. There are four
rounds and they correspond to the variable (t), whose range is divided into
four t-rounds as shown in Figure 4.12, each one made of 20 steps (for a total
of 80 steps). Each iteration can be seen as a counter that runs along the values
of each range made of 20 values. As you can see from Figures 4.12 and 4.13,
each iteration uses the constants (Kt) and the operations ft (B,C,D) of the
corresponding round. Each round updates the sub-registers (A,B,C,D,E) after
the other. At the end of the 4th round, when t = 79, the sub-registers
(A,B,C,D,E) are added to the sub-registers (H0, H1, H2, H3, H4) to perform
the 160 bits final hash value.Let's now examine the issue of constants in
SHA-1.Constants are fixed numbers expressed in hexadecimal defined with
particular criteria. An important criterion adopted to choose the constants in
SHA is to avoid collisions. Collisions happen when a hash function gives the
same result for two different blocks starting from different constants. So,
even though someone might think it would be a good idea to change the
values of the constants, don't try to change them because that could cause a
collision problem. In SHA-1, for example, the given constants are as follows:

Figure 4.12 – The Kt constants in SHA-1

Where, in different ranges of (t), different values correspond with the
constants (Kt), as you see in the preceding figure.Besides the constants, we
have the function ft (B,C,D) defined as follows:

Figure 4.13 – The ft function

The first initial register of SHA-1 is X0, a 160-bit hash function generated by
five sub-registers (H0, H1, H2, H3, H4) consisting of 32 bits each. We will
see the initialization of these sub-registers in Step 2 using constants expressed
in hexadecimal numbers.Now let's explain the SHA-1 algorithm by dividing
the process into four steps to obtain the final hash value of 160 bits:

Step 1 – Starting with a message [m], operate a concatenation of bits
such that:

y= m1 ǁ m2 ǁ m3 ǁ … ǁmL Where the ǁ symbol stands for the concatenation of
bits expressed by each block of message [ml] consisting of 512 bits.

Step 2 – Initialization of the sub registers: H0 = 67452301, H1 =
EFCDAB89, H2 = 98BADCFE, H3 = 10325476, H4 = C3D2E1F0.

You may notice that these constants are expressed in hexadecimal notation.

They were chosen by the NSA, the designers of this algorithm.

Step 3 – For j = 0, 1, … ,L-1, execute the following instructions:

a) mi = W0 ǁ W1……….. ǁW15,where each (Wj) consists of 32 bits.b) For t
= 16 to 79, put: Wt = (Wt-3 Wt-8 Wt-14 Wt-16) 1 c) At the beginning, we
put: A = H0, B = H1, C = H2, D = H3, E = H4 Each variable (A,B,C,D,E)
is of 32 bits length for a total length of the sub-register of 160 bits.d) For 80
iterations, where 0 ≤ t ≤79, execute the following steps in
succession: T = (A 5) + ft((B,C, D) +E + Wt + KtE = D, D = C, C = (B 30), B = A, A = T
The sub-registers (A,B,C,D,E) are added to the sub-registers (H0, H1, H2,
H3,
H4): H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4 + E

Step 4 – Take the following as output:

H0 ǁ H1 ǁ H2 ǁ H3 ǁ H4. This is the hash value of 160 bits.Here you can see
a scheme of SHA-1 (the sub-registers are A, B, C, D, E):

Figure 4.14 – SHA-1 scheme of the operations in each sub-register

Important Note

Remember from the previous section on the logic and notations
that:

Xr is left bit rotation, also represented as <<<, and means a circular
rotation of bits. So, in the case of A 5, it means that bits rotate 5
positions to the left, while in the case of B 30 bits, bits rotate 30
positions to the left.

This operator represents the modular sum (X+Y) (mod 2^32).

Notes and example on SHA-1

In this section, we will analyze the SHA-1 algorithm in a little more
detail.Since Steps 1 and 2 are just message initialization and sub-register
initialization, the algorithm's core is in Step 3, where you can see a series of
mathematical operations consisting of bit concatenation, XOR, bit shift, bit
transposition, and bit addition.Finally, Step 4 reduces the output to 160 bits
just because each sub-register H0, H1, H2, H3, and H4 is 32 bits. In Step 1,
we mentioned that the minimum block message provided in the input has to
be 512 bits. The message [m] could be divided into blocks of 512 bits, and if
the original message is shorter than 512 bits, we have to apply a padding
operation, involving the addition of bits to complete the block.SHA-1 is used
to compute a message digest of 160-bit length for an arbitrary message that is
provided as input. The input message is a bit string, so the length of the
message is the number of bits that make up the message (that is, an empty
message has length 0). If the number of bits in a message is a multiple of 8 (a
byte), for compactness, we can represent the message in hexadecimal.
Conversely, if the message is not a multiple of a byte, then we have to apply
padding. The purpose of the padding is to make the total length of a padded
message a multiple of 512. As SHA-1 sequentially processes blocks of 512
bits when computing the message digest, the trick to getting a strong message
digest is that the hash function has to provide the best grade of
confusion/diffusion on the bits involved in the iterative operations. The
process of padding consists of the following sequence of passages:

SHA-1 starts by taking the original message and appends 1 bit followed
by a sequence of 0 bits.
The 0 bits are added to ensure that the length of the new message is a
multiple of 512 bits.
For this scope, the new message will have a final length of n*512.

For example, if the original message has a length of 2800 bits, it will be
padded with 1 bit at the end followed by 207 bits. So, we will have 2800 + 1
+ 207 = 3008 bits. Then to make the result of the padding a multiple of 512,
using the division algorithm, notice that 3008 = 5 * 512 + 448, so to get to a
multiple of 512, we pad the message with 64 zeros. So, we finally obtain
3008 + 64 = 3072, which is the number of bits of the padded message,

divisible by 512 (bits per block).

Example of one block encoded with SHA- 1

Let's understand this with the help of a practical example:

Step 1 – Padding the message:

Suppose we want to encode the message abc using SHA-1, which in binary
system is expressed as: abc = 01100001 01100010 01100011 In hex, the
string is: abc = 616263 As you can see in the following figure, the message is
padded by appending 1, followed by enough 0s until the length of the
message becomes 448 bits. Since the message abc is 24 bits in length, 423
further bits are added. The length of the message represented by 64 bits is
then added to the end, producing a message that is 512 bits long:

Figure 4.15 – Padding of the message in SHA-1

Step 2 – Initialization of the sub-registers:

The initial hash value for the sub-registers H0, H1, H2, H3, and H4 will be:
H[0] = 67452301H[1] = EFCDAB89H[2] = 98BADCFEH[3] = 10325476H[4] = C3D2E1F0

Step 3 – Block contents:

W[0] = 61626380 W[1] = 00000000 W[2] = 00000000 W[3] = 00000000 W[4] = 00000000 W[5] = 00000000 W[6] = 00000000 W[7] = 00000000 W[8] = 00000000 W[9] = 00000000 W[10] = 00000000 W[11] = 00000000 W[12] = 00000000 W[13] = 00000000 W[14] = 00000000 W[15] = 00000018

on the sub-
registers: A B C D Et = 0: 0116FC33 67452301 7BF36AE2 98BADCFE 10325476t = 1: 8990536D 0116FC33 59D148C0 7BF36AE2 98BADCFE..........Tt = 79: 42541B35 5738D5E1 21834873 681E6DF6 D8FDF6AD
of the sub-

registers: H[0] = 67452301 + 42541B35 = A9993E36 H[1] = EFCDAB89 + 5738D5E1 = 4706816A H[2] = 98BADCFE + 21834873 = BA3E2571 H[3] = 10325476 + 681E6DF6 = 7850C26C H[4] = C3D2E1F0 + D8FDF6AD = 9CD0D89D

Step 4 – Result:

After performing the four rounds, the final message digest of the string abc
of 160-bit hash is: A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D

Figure 4.16 – A complete round in SHA-1

Now that we have learned about hash functions, we are prepared to explore
digital signatures.

Authentication and digital signatures
In cryptography, the authentication problem is one of the most interesting
and difficult problems to solve. Authentication is one of the most sensitive
functions (as well as the most used) for the procedure of access
control.Authentication is based on three methods:

On something that only the user knows (for example, a password)
On something that only the user holds (a smart card, device, or a token)
On something that characterizes the user (for example, fingerprints, an
iris scan, and in general biometric characteristics of a person)

In addition to these three methods, there is one more method involving
something that only the user holds, related to something that uniquely
characterizes them: brain waves. For example, when you look at a picture or
think about it, the brain waves activated by your brain are unique, different
from any other brain waves that characterize another person.This invention is
related to the authentication between human/computer. In other words, with
Brain Password, it is possible to unlock devices such as computers and
telephones and get access to web applications. I will introduce brain
passwords in Chapter 6, New Algorithms in Public/Private Key
Cryptography.In the next section, we will analyze an authentication method
based on digital signatures. Keep in mind (as we will see later on) that there
are similar methods of authentication based, for example, on zero knowledge,
which will be covered further in Chapter 5, Introduction to Zero-Knowledge
Protocols.Let's see how a method of authentication based on a digital
signature over public/private key encryption works.sLet's consider an
example where Alice wants to transmit a message to Bob. She knows Bob's
public key (as in RSA), so Alice encrypts the message [M] with RSA and
sends it to Bob.Let's look at some of the common problems faced when Alice
transmits the message:

How can Bob be sure that this message comes from Alice
(authentication problem)?
After Bob has received the message, Alice could always deny that she is
the transmitter (non-repudiation).
Another possible issue is that the message [M] could be manipulated by

someone who intercepted it (a Man-in-the-Middle (MiM) attack) and
subsequently, the attacker could change part of the content. This is a
case of integrity loss of the message.
Finally, here's another consideration (and probably the first time you'll
see it in a textbook): the message could be intercepted and spied on by
the attacker, who recovers the content but decides not to modify it. How
can the receiver and the transmitter be sure that this doesn't happen? For
example, how can you be sure that your telecommunication provider or
the cloud that hosts your data don't spy on your messages? I refer to this
as the spying problem, and you will see that there is a solution to
discover and avoid also this problem.

To answer the last question, you could rightly say that since the message [M]
is encrypted, it is difficult – if not impossible – for the attacker to recover the
secret message without knowing the key.I will demonstrate that (under some
conditions) it is possible to spy on an encrypted message, even if the attacker
doesn't know the secret key for decryption.We will discuss problems 1, 2, and
3 in this chapter. As for problem 4, I will explain an attack method for spying
and the relative way to repair this problem in Chapter 6, New Algorithms in
Public/Private Key Cryptography. Where I explain many of my Algorithms
and some issues found during my carrier with the relative solutions of
defence,A digital signature is a proof that the sender of the message [M]
instructs the receiver to do the following:

Prove their identity
Prove that the message [M] has not been manipulated
Provide for the non-repudiation of the message

Let's see how digital signatures can help us to avoid all these problems and
also how it is possible to sign a message based on the type of algorithm and
the different ways of using signatures. We will first look at RSA digital
signatures, and will then analyze the other methods of signatures in public-
private key algorithms.

RSA digital signatures

As I have told you before, it's possible to sign a message in different ways;

we will now explore how to mathematically sign one and how anyone can
verify a signature.Recalling the RSA algorithm from Chapter 3, Asymmetric
Encryption, we know that the process of encryption for Bob is as
follows:Perform encryption based on the public key of Alice (Na) and define
the secret elements within the square brackets [M]: [M]^e ≡ c (mod Na)
(Na) is the public key of the receiver (Alice). Therefore, Bob will encrypt the
message [M] with Alice's public key, and Alice will decrypt [M] with her
private key [da] by performing the following
operation: c^[da] ≡ [M] (mod Na) Where the parameter [da] is the private
key of Alice, given by the operation: INV (e) ≡ [da] mod(p-1)(q-1) The
process for the digital signing and verification of Bob's identity is as follows:

Step 1: Bob chooses two big prime numbers, [p1, q1], and keeps them
secret.
Step 2: Bob calculates Nb = [p1] * [q1] and publishes (Nb) as his
public key.
Step 3: Bob calculates his private key [db] such that:

INV (e) ≡ [db] mod (p1-1)(q1-1)

Step 4: Bob performs the signature:

S ≡ [M]^[db] (mod Nb) Where (S) and (Nb) are public and [db] is secret.
What about [M]?[M], the message, is supposed to be secret and shared only
between Bob and Alice. However, a digital signature should be verified by
everyone. We will deal with this issue later on. Now let's verify the signature
(S).

Step 5: Verifying the signature:

Signature verification is the inverse process of the above. Alice (or anyone)
can verify the following: S^e ≡ [M] (mod Nb) If the preceding equation is
verified, then Alice accepts the message [M].Before analyzing the issue of
[M], let's understand this algorithm with the help of a numerical
example.Numerical example:Recalling the RSA example from Chapter 3,
Asymmetric Encryption, we have the following numerical parameters given
by the RSA algorithm: [M] = 88e = 9007 Alice's parameters were as
follows: [p] = 101[q] = 67Na = 6767 Let's perform all of the steps of RSA

to show the comprehensive process of digitally signing the message:

Step 1 – Bob's encryption is as follows:

[M] ^e ≡ c (mod N)88^9007 ≡ 6621 (mod 6767)c = 6621

Step 2 – Bob's signature (S) for the message [M] will be generated as
follows:

Bob chooses two prime numbers, [p,
q]: [p1] = 211[q1] = 113Nb= 211*113 = 238439007 * [db] ≡ 1 (mod (211-1)*(113-1))
the modular equation for [db], we have the following: [db] = 9103 Now,
Bob can sign the
message: [M]^[db] ≡ S (mod Nb)88^9103 ≡ 19354 (mod 23843)S = 19354
sends to Alice the pair (c, S) = (6621, 19354).

Step 3 – Alice's decryption will be as follows:

c^[da] ≡ [M] (mod Na) Alice calculates
[da]: 9007 * [da] ≡ 1 (mod (101-1)*(67-1))[da] = 3943 Alice decrypts
the cryptogram (c) and obtains the message
[M]: c^[da] ≡ [M] (mod Na)6621^3943 ≡ 88 (mod 6767)

Step 4 – Verification of Bob's identity:

If the signature (S) elevated to the parameter (e) gives the message [M], then
Alice can be sure that the message was truly sent by
Bob: S^e ≡ [M] (mod Nb)19354^9007 = 88 (mod 23843) Indeed, Alice
obtains the message M=88.

Important Note

I hope someone has noticed that the message [M] can be verified
by anyone, and not only by Alice, because (S, e, Nb) are public
parameters. So, if Bob uses the original message [M], instead of its
hash h[M] to gain the signature (S) (see above for the encryption
procedure), everyone who knows Bob's public key could easily
recover the message [M]!

It's just a matter of solving the following equation to recover the secret
message [M]: S^e ≡ x (mod Nb) Where the parameters (S, e, Nb) are all
known.In this case, hash functions come to our aid. Performing the hash
function h[M] = (m), Bob will send the couple (c, S) , signing (m) instead of
[M].Alice already got the encrypted message [M], so only Alice can verify
it: h[M] = m If it is TRUE, then Bob's identity will be verified by Alice; if it
is FALSE, Bob's claim of identity will be refused.

Why do digital signatures work?

If anyone else who isn't Bob tries to use this signature, they will struggle with
the discrete logarithm problem. Indeed, generating [db] in the following
equation is a hard problem for the attacker to
solve: m^[db] ≡ S (mod Nb) Also, even if (m, S) are known by the attacker,
it is still very difficult to calculate [db]. In this case, we are dealing with a
discrete logarithm problem like what we saw in Chapter 3, Asymmetric
Algorithms.Let's try to understand what happens if Eve (an attacker) tries to
modify the signature with the help of an example:Eve (the attacker)
exchanges [db] with (de), computing a fake digital signature
(S'): m^(de) ≡ S' (mod Nb) If Eve is able to trick Alice to accept the
signature (S'), then Eve can make an MiM attack by pretending to be Bob,
substituting (S') with the real signature (S).But when Alice verifies the
signature (S'), she recognizes that it doesn't correspond to the correct
signature performed by Bob because the hash of the message is (m'), not
(m): (S')^e ≡ m' (mod Nb)m' m So, Alice refuses the digital signature and
will not open any message coming from this fake address.That is why
cryptographers also need to pay a lot of attention to the collisions between
hashes.Now that we have got a different result, that is, (m') instead of (m),
Alice understands there is a problem and doesn't accept the message [M].This
is the scope of the signature (S).The preceding attack is a simple trick, but
there are some more intelligent and sneaky attacks that we will see later on,
in Chapter 6, New Algorithms in Public/Private Key Cryptography, when I
will explain unconventional attacks.

Digital signatures with the ElGamal algorithm

ElGamal is a public-private key algorithm, as we saw in Chapter 3,
Asymmetric Algorithms, based on the Diffie-Hellman key exchange. In
ElGamal, we have different ways of signing the message than RSA, but all
are equally valid.Recalling the ElGamal encryption technique, we have the
following elements:

(g, p): Public parameters
[k]: Alice's private key
[M]: The secret message
B ≡ g^[b] (mod p): Bob's public key
A ≡ g^[a] (mod p): Alice's public key

Alice's encryption: y1 ≡ g^[k] (mod p)y2 ≡ [M]*B^[k] (mod p)

Note

Remember that the elements inside the square brackets indicate
secret parameters; all the others are public.

Now, if Alice wants to add her digital signature to the message, she will
make a hash of the message, h[M], to protect the message [M], and will then
transmit the result to Bob in order to prove her identity.To sign the message
[M], Alice first has to generate the hash of the message
h[M]: h[M] = m Now, Alice can operate with the digest value of [M]——>
(m) in cleartext because, as we have learned before, it is almost impossible to
return to [M] from its cryptographic hash (m).Alice calculates the signature
(S) such that:

Step 1 – Making the inverse of [k] in (mod p-1):

[INVk] ≡ k^(-1) (mod p-1)

Step 2 – Performing the equation:

S ≡ [INVk]* (m - [a] *y1) (mod p-1) Alice sends to Bob the public
parameters (m, y1, S).

Step 3 – In the first verification, Bob performs V1:

V1 ≡ A^(y1) * y1^(S) (mod p) After the decryption step, if h[M] = m,
Bob obtains the second parameter of verification,
V2: V2 ≡ g^m (mod p) Finally, if V1 = V2, Bob accepts the message.Now,
let's better understand this algorithm with the help of a numerical
example.Numerical example:Let's suppose that the value of the secret
message is: [M]= 88 We assign the following values to the other public
parameters: g = 7p = 200003h[M] = 77 The first step is the "Key
initialization" of the private and public
keys: [b] = 2367 (private key of Bob)[a] = 5433 (private key of Alice)[k] = 23 (random secret number of Alice)B = 151854 (public key of Bob)A = 43725 (public key of Alice)y1 ≡ g^[k] (mod p) = 7^23 (mod 200003) = 90914
the initialization process, Alice calculates the inverse of the key (Step 1) and
then the signature (Step 2):

Step 1 – Alice computes the inverse of [k] in (mod p-1):

[INVk] ≡ [k]^(-1) (mod p-1) = 23^-1 (mod 200003 - 1) = 34783

Step 2 – Alice can get now the signature (S):

S ≡ [INVk]* (m - [a] *y1) (mod p-1)S ≡ 34783 * (77 – 5433 * 90914) (mod 200003 - 1)S = 72577

sends to Bob the public parameters (m, y1, S)= (77, 90914, 72577)

Step 3 – With those parameters Bob can perform the first verification
(V1). Consequently, he computes V2. If V2 = V1 Bob accepts the digital
signature (S):

V1 ≡ A^(y1) * y1^(S) (mod p)V1 ≡ 43725 ^ (90914) * 90914 ^ 72577 (mod 200003) = 76561V1 = 76561

verification
(V2): V2 ≡ g^m (mod p)V2 ≡ 7^ 77 (mod 200003) = 76561V2 = 76561 Bob
verifies that V1= V2.Considering the underlying problem that makes this
algorithm work, we can say that it is the same as the discrete logarithm.
Indeed, let's analyze the verification
function: V1 ≡ A^(y1) * y1^(S) (mod p) All the elements are made by
discrete powers, and as we already know, it's a hard problem (for now) to get
back from a discrete power even if the exponent or the base is known. It is
not sufficient to say that discrete powers and logarithms ensure the security
of this algorithm. As we saw in Chapter 3, Asymmetric Cryptography, the
following function could also be an issue: y2 ≡ [M]*B^[k] (mod p) It's
given by multiplication. If we are able to recover [k], then we have

discovered [M].So, the algorithm suffers not only from the discrete logarithm
problem but also from the factorization problem.Now that you have learned
about the uses and implementations of digital signatures, let's move forward
to explore another interesting cryptographic protocol: blind signatures.

Blind signatures

David Chaum invented blind signatures. He struggled a lot to find a
cryptographic system to anonymize digital payments. In 1990, David funded
eCash, a system that adopted an untraceable currency. Unfortunately, the
project went bankrupt in 1998, but Chaum will be forever remembered as one
of the pioneers of digital money and one of the fathers of modern
cryptocurrency, along with Bitcoin.The underlying problems that Chaum
wanted to solve were the following:

To find an algorithm that was able to avoid the double-spending
problem for electronic payments.
To make the digital system secure and anonymous to guarantee the
privacy of the user.

In 1982, Chaum wrote an article entitled Blind Signatures for Untraceable
Payments. The following is an explanation of how the blind signatures
described in the article work and how to implement them.Signing a message
blind means to sign something without knowing the content. It could be used
not only for digital payments but also if Bob, for example, wants to publicly
register something that he created without making known to others the details
of his invention. Another application of blind signatures is in electronic
voting machines, where someone makes a choice (say, in an election for the
president or for a party, for example). In this case, the result of the vote (the
transmitted message) has to be known by the receiver obviously, but the
identity of the voter has to remain a secret if the voter wants to be sure that
their vote will be counted (that is the proper function of blind signatures).I
will expose an innovative blind signature scheme for the MBXI cipher in
Chapter 6, New Algorithms in Public/Private Key Cryptography, where I will
introduce new ciphers in private/public keys, including the MBXI, invented
and patented by me in 2011. Let's see now how David Chaum's protocol
works by performing a blind signature with RSA.

Blind signature with RSA

Suppose Bob has an important secret he doesn't want to expose to the public
until a determined date. For example, he discovered a formidable cure for
coronavirus to avoid cancer and he aspires to get the Nobel Prize.Alice
represents the commission for the Nobel Prize.Alice picks up two big secret
primes [pa, qa]:

[pa*qa] = Na, which is Alice's public key.
(e) is the same public parameter already defined in RSA.

The parameter [da] is Alice's private key, given by this
operation: INV (e) ≡ [da] mod(pa-1)(qa-1) Suppose that [M1] is the
secret belonging to Bob. I have just called it [M1] to distinguish it from the
regular [M].Bob picks up a random number [k] and keeps it secret.Now Bob
can go ahead with the blind signature protocol on [M1]:

Step 1 – Bob performs encryption (t) on [M1] to blind the message:

t ≡ [M1] * [k]^e (mod Na) Bob sends (t) to Alice.

Step 2 – Alice can perform the blind signature given by the following
operation:

S ≡ t^[da] (mod Na) Alice sends (S) to Bob, who can verify whether the
blind signature corresponds to the message [M1].

Step 3 – Verification:

Bob calculates (V): S/k ≡ V (mod Na) Then he can verify the
following: V^e ≡ [M1] (mod Na) If the last operation is TRUE, it means
Alice has effectively signed blind [M1]. In this case, Bob can be sure of the
following: [M1]^[da] ≡ V (mod Na) Since no one except Alice could have
performed function (S) without being able to solve the discrete logarithm
problem (as already seen in Chapter 3, Asymmetric Algorithms), the signer
must be Alice, for sure. This sentence remains valid until any other variable
occurs; for example, when someone finds a logical way to solve the discrete
logarithm or a quantum computer reaches enough qubits to break the

algorithm, as we'll see in Chapter 8, Quantum Cryptography. Let's see an
example to better understand the protocol.Numerical example:

The parameters defined by Alice are as follows:

pa = 67qa = 101 So, the public key (Na) is the
following: 67*101 = Na = 6767da ≡ 1/e (mod (pa-1) * (qa-1))Reduce [e*x == 1, x, Modulus -> (pa - 1)*(qa - 1)][da] = 1553e = 17

Bob picks up a random number, [k]:

k = 29 Bob calculates (t): t ≡ M1* k^e ≡ 88 * 29^17 = 3524 (mod 6767)

Bob sends (t) to Alice ———————————> Alice can now
blind-sign (t):

S ≡ t^[da] ≡ 3524^1553 = 1533 (mod 6767)

Bob can verify (S) <———————— Alice sends (S = 1553)s

S/k ≡ V (mod Na)1533/29 = 2853 (mod 6767)Reduce [k*x == S, x, Modulus -> Na]x = 2853V = 2853if:V^e ≡ [M1] (mod Na) 2853^17 ≡ 88 (mod 6767)

Bob accepts the signature (S).As you can see from this example and the
explanation of blind signatures, Alice is sure that Bob's discovery (the
coronavirus cancer cure) belongs to him, and Bob can preserve his invention
without declaring the exact content of it before a certain date.

Notes on the blind signature protocol

You can do a double-check on [M1], so you will be able to realize that Alice
has really signed [M1] without knowing anything about its
value: M1^[da] ≡ V (mod Na)88^1553 ≡ 2853 (mod 6767) A warning about
blind signatures is necessary, as Alice doesn't know what she is going to sign
because [M1] is hidden inside (t). So, Bob could also attempt to convince
Alice to sign a $1 million check. There is a lot of danger in adospting such
protocols. Another consideration concerns possible attacks.As you see here,
we are faced with a factorization problem: t ≡ M1* [k]^e (mod Na) We can
see that (t) is the product of
[X*Y]: X = M1 <———— Factorization problemY = k^e It doesn't matter if
the attacker is unable to determine [k], as they can always attempt to find

[M1] by factoring (t), if [M1] is a small number, for example. It's simply the
case of M1=0, because of course (t) will be zero and the message can be
discovered by the attacker to be M = 0.sOn the other hand, if we assume, for
example, that (k^e) is a small number, since [k] is random, then the attacker
can perform this
operation: Reduce [(k^e)*x == t, x, Modulus -> Na]x = MESSAGE In this
case, if, unfortunately, [k^e] (mod Na) results in a small number, the attacker
can recover the message [M1].As you will understand after reading the next
chapter, blind signatures are the precursor to zero-knowledge protocols; the
object of study in the next Chapter 5, Introduction to Zero-Knowledge
Protocols. Indeed, some of the elements we find here, such as random [k]
and the execution of blind signatures, and the last step of verification, V =
S/k, performed by the receiver, utilize the logic that inspired zero-knowledge
protocols.

Summary
In this chapter, we have analyzed hash functions, digital signatures, and blind
signatures. After introducing hash functions, we started by describing the
mathematical operations behind these one-way functions followed by an
explanation of SHA-1. We then explained digital signatures with RSA and
ElGamal with practical numerical examples and examined the possible
vulnerabilities. Finally, the blind signature protocol was introduced as a
cryptographic instrument for implementing electronic voting and digital
payment systems.Therefore, you have now learned what a hash function is
and how to implement it. You also know what digital signatures are, and in
particular, you got familiar with the signature schemes in RSA and ELGamal.
We also learned about the vulnerabilities that could lead to digital signatures
being exposed, and how to repair them.Finally, you have learned what blind
signatures are useful for and their fields of application. These topics are
essential because we will use them abundantly in the following chapters of
this book. They will be particularly useful in understanding the zero-
knowledge protocols explained in Chapter 5, Introduction to Zero-
Knowledge Protocols, and the other algorithms discussed in Chapter 6, New
Algorithms in Public/Private Key Cryptography. Finally, Chapter 6 will
examine new methods of attack against digital signatures. Now that you have
learned the fundamentals of Hash functions and digital signatures, it is time

to analyze zero-knowledge protocols in detail in the next chapter.

5 Introduction to The “spooky
math”. Zero-Knowledge Protocols.
and Attacks

Join our book community on Discord
https://packt.link/SecNet

As we have already seen with the digital signature, the authentication
problem is one of the most important, complicated, and intriguing challenges
that cryptography is going to face in the near future. Imagine that you want to
identify yourself to someone who doesn't know you online. First, you will be
asked to provide your name, surname, and address; going deeper, you will be
asked for your social security number and other sensitive data that identifies
you. Of course, you know that exposing such data via the internet can be very
dangerous because someone might steal your private information and use it
for nefarious purposes.Some time ago, I watched a video that impressed me. I
have even decided to insert it into my presentations about privacy and
security, and I presented it during an event related to Smart Cities in Silicon
Valley where I had been invited to talk. The video starts with an alleged
magician who invites people to enter a tent set up in the middle of the city.
The magician reads, one by one, each person's past and something about their
future. The unbelievable thing was that the magician (who had never met any
of the people interviewed before) knew particulars about the astonished
participants' lives only they were supposed to know.How was it possible?
Was it really magic or was it just a trick? At the end of the video, the trick
was revealed. The magician knew everything about the participants' lives –
finances, assets owned, and even credit card numbers – thanks to a staff of
techno-hackers who sat behind a curtain, working hard to discover all the

https://packt.link/SecNet

digital secrets they could about the participants. If a hacker knows your
identity, they can easily find out about most of your digital life.In another
case, you might have read a news story where a gang of thieves planted a
fake ATM in a commercial center. Each time a person inserted a card and
entered their PIN, a computer recorded this information and the ATM refused
the operation. Once the information had been collected from the cards and the
PINs stolen, the hackers could then clone the cards, reproducing them along
with their PINs, and subsequently be able to withdraw money at an actual
ATM.How is it possible to block this kind of scam? There are many
situations in which sensitive information, such as passwords and other private
information, is required. If a hacker obtains this information linked to a
person or a machine, they can easily steal identities and wreak havoc for their
victims.One way to solve these kinds of problems is by not revealing any
sensitive information, such as: Name, Surname, address, social security
number, PIN , but this is not always possible. Another way is to avoid
exposing private information by giving a proof of knowledge. A proof of
knowledge is essentially a way to bypass to give more information than
necessary or identify yourself not exposing your personal data. These
cryptographic protocols are called Zero-Knowledge Protocols (ZKPs),
which we are going to study in this chapter.In this chapter, we are going to
cover the following topics:

Mainframe and logic of Zero-Knowledge Protocols
Non-interactive and interactive ZKPs (the Schnorr protocol) with
examples and possible attacks on them
SNARK protocols and Zcash in a nutshell
One-round ZKPs
A new Protocol by the Author: ZK13 and the zero-authentication
protocol

Now that you have been introduced to the world of ZKPs and know what
they are used for, it's time to go deeper to analyze the main scenarios and
protocols used in cryptography.

The main scenario of a ZKP – the digital cave
Imagine this fantastic scenario: Peggy has to demonstrate to Victor that she is

able to open a locked door in the middle of Ali Baba’s cave, an annular cave
with only one entrance/exit that can be reached from two directions, as you
can see in the following figure. I suppose you have noticed that I have
changed the names of the two actors, Peggy and Victor, from the usual Alice
and Bob, just because here a verification is due, and the names Peggy and
Victor match better with the first letters of prover (P) and verifier (V).

Figure 5.1 – Ali Baba's cave

This example involves Ali Baba's cave revisited in modern times, in which

the door in the middle of the cave is locked through a secret electronic
combination that's strong enough to prevent the entry of anyone who doesn't
know the secret combination. Now, suppose that Peggy must prove to Victor
that she knows the combination to unlock the door without revealing the
numbers to him.So then, the challenge for Peggy is not to reveal the
combination of the door to Victor, because Peggy is not sure whether Victor
knows it and she doesn't want to give Victor any information about the
combination. She just needs to demonstrate to Victor that she can exit from
the opposite side of the cave.Expressed differently, ZKP is a challenge where
the answer is not revealing the exact information required, but simply
proving to be able to solve the underlying problem. Indeed, the natural way to
demonstrate knowing something is to reveal it, and the verification just
comes naturally. However, by taking this approach of just demonstrating
what you know so directly, you could reveal more information than required.
With a ZKP, Peggy can avoid the issue of revealing the digital door's
combination and, at the same time, Victor can be sure (even if he doesn't
know the combination) that Peggy knows the combination if he sees Peggy
coming out of the cave from the opposite side. There are many ways to
implement a ZKP because, as you can imagine, there are many scenarios in
which such verification could be required. For example, you can think of
Peggy as a human and Victor as a machine (an ATM or server). Peggy has to
identify herself to the machine, but she doesn't want to reveal any sensitive
data, such as her name or surname. She just has to prove to the machine that
she is really who she is supposed to be. The aim, in this case, is to avoid
revealing Peggy's identity. ZKPs can be applied here. Another use case where
ZKPs can be applied is the authentication of virtual machines in a computer
network. We will cover this use case in Chapter 9, Crypto Search Engine,
where we will use ZKPs to protect against man-in-the-middle attacks.ZKPs
can be applied to other kinds of challenges than authentication, such as the
fields of nuclear disarmament and blockchain. Now, we will delve deeper
into the applications of ZKPs, starting with analyzing non-interactive
protocols used to prove statements.

Non-interactive ZKPs

The protocol we are going to analyze in this section is a non-interactive
ZKP. This means that the prover has to demonstrate the statement, assuming

that the verifier does not know the solution (the content of the statement) and
that the verification is made without any exchange of information from the
verifier.The scheme could be summed up as follows:Prover (statement)
————-> [Proof of knowledge] —————> Verifier (verification)Let's
take this problem into consideration: Peggy states to know that a document
[m] is encrypted with RSA, as
follows: m^e ≡ c (mod N)But Peggy doesn’t want to reveal the content [m] to Victor.
(N, c, e) are public parameters, and [m] is secret.

Important Note

Remember, I always denote the secret elements of the functions
with the [] symbols.

In order to demonstrate the statement to Victor, the following protocol is
executed:

Peggy chooses a random integer, [r1] (she keeps it secret), and
calculates the inverse of r1 (represented as INV[r1]) multiplied by [m]
(modulo N):

r2 ≡ [m] * r1^-1 (mod N) [Peggy keeps r2 secret too]

Peggy calculates (x1) and (x2), as follows:

x1 ≡ r1^e (mod N)x2 ≡ r2^e (mod N) Peggy sends x1 and x2 to Victor.

Finally, Victor verifies the following:

x1*x2 ≡ c (mod N) It is supposed here that if Victor can verify step 3,
x1*x2 ≡ c (mod N), then Peggy really should know [m].As you can imagine
see, Peggy wants to demonstrate to Victor that she effectively knows the
message [m] without revealing it. Remember that in this case, Peggy ignores
whether Victor knows [m] or not. In fact, using this protocol it’s irrelevant if
Vicor actually knows [m] or not. So, the underlying challenge implicit to this
statement is for Peggy to be able to solve the RSA problem without revealing
[m]. Indeed, it's supposed that if Peggy knows [m] (hidden in the cryptogram
(c)), she can also calculate the function x1*x2 ≡ c (mod N); otherwise, she

will not be able to do that.Another important consideration is the following: if
(c) is a big number, it is supposed (I hope you will agree with me, but don't
take this as gospel) that it should be hard to know x1 and x2 (the two factors
of (c)) without knowing [m]. It could be considered the same degree of
computational difficulty to factoring (N). As you can see in the preceding
function, (r2) is calculated using [m] in the following
equation: r2 ≡ [m] * r1^-1 (mod N) So, the final effect of the
multiplication between x1*x2 (as you can see in the following
demonstration) will be to eliminate (r1) and leave m^e (mod N), which is
equal to (c).Even if Victor doesn't know [m], he can believe what Peggy
states (to know [m]) because she has demonstrated she can factorize (c).RSA
is supported by the factorization problem (as we saw in Chapter 3,
Asymmetric Encryption); here, the function is as
follows: x1*x2 ≡ c (mod N) This states that it is computationally hard to
find two numbers (x1, x2) that factorize (c).

Important Note

I will prove that an attack on this protocol exists that avoids the
factorization problem in order to trick Victor, which we will
experiment with later in this chapter.

Numerical example:Let's see with a numerical example how this protocol
works before going deeper to analyze
it: m = 88N = 2430101e = 9007m^e ≡ c (mod N)88^9007 ≡ 160613 (mod 2430101)
let's start the protocol of verification.Peggy chooses a random
number: r1 = 67

Step 1: Peggy calculates r2:

r2 ≡ [m] * r1^-1 (mod N) First, Peggy calculates the [Inv(r1)] function
(the inverse value of r1 (mod N)), and then she multiplicates it for
[m]: 67 * x ≡ 1 (mod 2430101)x = 217621 [m]* x ≡ r2 (mod N)88 * 217621 ≡ 2139941 (mod 2430101)
we have Peggy gets r2: r2 = 2139941

Step 2: Then, Peggy calculates x1 and x2:

x1 ≡ r1^e (mod N)x2 ≡ r2^e (mod N)67^9007 = 1587671 (mod 2430101)x1 = 15876712139941^9007 ≡ 374578 (mod 2430101)x2 = 374578

Peggy sends x1, x2 (1587671, 374578) to Victor.

Step 2: Finally, Victor can verify the following:

x1 * x2 ≡ c (mod N)1587671 * 374578 ≡ 160613 (mod 2430101)160613 = c (OK)

see why this protocol is mathematically correct.

Demonstration of a non-interactive ZKP

We have to demonstrate the following: x1 * x2 ≡ c (mod N) Where c ≡
[m]^e (mod N), we can substitute in the previous function (x1 = r1^e) and
(x2 = r2^e) so that we get the
following: x1 * x2 ≡ r1^e * r2^e ≡ c (mod N) Substituting r2 into the
equation, we have the
following: x1 * x2 ≡ (r1)^e *(m * ((r1^-1)^e) ≡ (r1)^e * m^e * (Inv(r1)^e) ≡ c (mod N)
by the modular power's properties (collecting together the two factors I have
highlighted), we have the following: r1^e * (Inv(r1))^e ≡ 1 (mod N) So,
eliminating r1^e and (Inv(r1))^e from the final equation will leave only the
m^e remaining in the second stage of the equation, and the result will be as
follows: x1 * x2 ≡ m^e ≡ c (mod N) As you know, since the beginning of
this demonstration, (m^e) is just the RSA encryption of the secret message
[m], which is equal to the cryptogram (c); that is why x1*x2 = c. That's just
what we wanted to demonstrate.This protocol has an important characteristic:
it’s executed in only 2 Steps avoiding any interaction between Peggy and
Victor:Peggy calculates the parametersVictor verify the correctness The next
section will show how we can attack an RSA ZKP.

Demonstrating an attack on an RSA ZKP

If you have stayed with me until this point, I'm hoping you will follow me
further on this journey, so I can give you a demonstration of using a protocol
to trick the verifier.Note that I created this attack at the end of 2018. This is
one of the possible attacks on a ZKP that I have demonstrated.The goal of
this attack is to demonstrate that Eve (the attacker) can calculate two fake
numbers (x1, x2) which prove to factorize (N) even if Eve effectively doesn't
know [m].Let's explore how this attack works and what effects are produced:

Eve (the attacker) picks up a random number, [r], and calculates the
following:

[r] * (v1) ≡ e (mod N) [r] and (e) are public, so that is known by
everyone. By means of this function, Eve can extract (v1).

In parallel, Eve calculates the following:

e * x ≡ c (mod N) The parameters (e, c) are also known. This, just like in
step 1, is an inverse multiplication (modulo N). The scope of this operation is
to obtain [x]. Then, using [x], Eve multiplies [x] by [r], yielding
(v2): x * r ≡ v2 (mod N) Eve sends (v1, v2) to Victor, who can verify the
following: v1 * v2 ≡ c (mod N) Eve can impersonate Peggy, and she can
claim to know [m] even if she doesn't know it!Numerical example:r = 39 is
the secret number chosen by Eve. (N, c, e) are the same public parameters of
the previous example (N = 2430101, c = 160613, e = 9007).

Step 1: Eve calculates v1:

e * r^-1 ≡ v1 (mod N)9007 * 436172 = 1557988 (mod 2430101)v1 = 1557988

Step 2: Eve performs v2.

The next operation is to obtain the inverse of (e) with respect to (c).e * x ≡ c
(mod N), obtaining (x) in inverse modular
multiplication: 9007 * x = 160613 (mod 2430101)x = 2031892 Then, using
x, Eve obtains gets v2, performing the following operation:x * r ≡ v2 (mod
N), obtaining v2: v2 = 1480556 After having gained v2, Eve sends (v1 =
1557988; v2 = 1480556) to Victor.

Step 3 2: Verification stage.

Finally, Victor can verify the
following: v1 * v2 = c 1557988 * 1480556 = 160613 (mod 2430101) The
attack was successful!

Important Note

Peggy herself could be the primary actor of this trick if she doesn't

know [m], but she wishes to convince Victor of it.

This attack works because (c) contains [m], and I don't need to demonstrate
showing the value of [m]. This protocol isn't required to show [m] or its hash,
[H(m)], because Peggy doesn't want to reveal any information about [m] to
Victor. Remember this is not an authentication protocol, but it's a proof of
statement (or knowledge) that Peggy knows [m].For completeness, there is to
add that (c) is not a product of 2 big prime numbers (such as N is) as
probably you have already noticed in the example. So, the logical base of this
protocol is weak: finding 2 numbers whose product is (c) could be not so
difficult even if (c) is a large number. To use a hypothetical example, you can
think of a scenario where there are two countries: (A) has to demonstrate to
(B) that it holds the formula for an atomic bomb. Using this ZKP, (A) could
claim to know [m] (the formula of the atomic bomb) without really knowing
it. This attack could be avoided under one certain conditions, one of those is
the following:If Victor already knows [m], then he can require Peggy to send
him a hash of the message, H[m]. Victor can then verify whether (x1 and x2)
are the correct values, and he will accept or deny the verification based on the
correspondence of the hash value with [m].In this case, the problem is that
the aim of this protocol was not to prove something that was already known
but to prove something independently, regardless of whether or not it was
known.This last point is very important because if Victor knows [m], then
this protocol works; if Victor doesn't know [m], this protocol fails.To avoid
this those problems, we have to switch to an interactive protocol, as we will
see in the next section.

Schnorr's interactive ZKP

The protocol that we saw in the previous section is a non-interactive protocol,
where Peggy and Victor don't interact with each other but there is simply a
commitment between them. The commitment is that Peggy has to shows
Victor that she knew the message [m] without revealing anything about it.
Thus, she tries to demonstrate to Victor that she can overcome the RSA
problem (or another hard mathematical problem) as proof of her honesty.
However, we have also seen that this protocol can be bypassed using a
mathematical trick.Let's see whether the following interactive ZKP is more
robust and can prevent possibly devastating attacks.We always have Peggy

and Victor as our main actors. So, let's assume the following:

p is a big prime number.
g is the generator of (Zp).
B ≡ g^a (mod p) is the public parameter of Peggy.
(p, g, B) are public parameters.
[a] is the secret number object of the commitment.

Peggy claims that she knows [a]; let’s say that [a] it’s the password to
unlock a certain amount of money in a wallet. In order to demonstrate the
claim, Peggy and Victor apply the following interactive protocol:

Step 1: Peggy chooses a random integer, [k], where 1 ≤ k < p-1.

She performs the following calculation: V ≡ g^k (mod p) Peggy sends (V) to
Victor.

Step 2: Victor chooses a random integer, (r), where 1 ≤ r < p-1.

Victor sends (r) to Peggy.

Step 3: Peggy calculates as follows:

w ≡ (k - a*r) (mod p-1) Peggy sends (w) to Victor.

Step 4: Finally, Victor verifies as follows:

V ≡ g^w * B^r (mod p) If that is true, Victor should be convinced that
Peggy knows [a].Let's see why the protocol should work and the reason why
the last function (V) states that Peggy really knows [a] (the
commitment).First of all, I will show why the protocol is mathematically true,
and then I will give a numerical example of this protocol.

A demonstration of an interactive ZKP

Recall the following
instructions: V ≡ g^k (mod p) B ≡ g^a (mod p)w ≡ k - a*r (mod p-1) Now,
we substitute all the past equations inside the last verification of step

3: V ≡ g^w * B^r (mod p)V ≡ g^k (mod p) Substituting the functions in
(V), the equation becomes the
following: V ≡ (g^ (k - a*r (mod p-1))) * ((g^a)^r) (mod p) For the
properties of exponential factors, we have the
following: g^k ≡ g^ (k -[ar]) * g^[ar] (mod p)V ≡ g^k ≡ g ^(k -ar +ar)
[-ar] with [+ar], we get back the following: g^k ≡ g^k (mod p) That's what
we wanted to demonstrate.Let's do a numerical example to better visualize
how this interactive ZKP works. Numerical
example: p = 1987a = 17g = 3 (p = 1987 and g = 3) are public parameters.
[a] = 17 is the secret number that Peggy claims to know: B ≡ g^a (mod p)
(B) is the public key of Peggy, given by the
following: 3^17 ≡ 1059 (mod 1987) Peggy picks up a random number, [k] =
67, and she calculates (V): V = 3^67 = 1753 (mod 1987) Peggy sends (V)
to Victor.Victor picks up a random number (r = 37) and sends it to Peggy,
who can calculate was
following: k – a * r ≡ w (mod p-1)67 – 17 * 37 ≡ 1424 (mod 1987-1)w = 1424
sends (w = 1424).Finally, Victor now verifies whether (V) = 1753
corresponds to the
following: g^w * B^r ≡ V (mod p)3^1424 * 1059^37 ≡ 1753 (mod 1984)V = 1753
fact, it does correspond.Now, we analyze the reason why this protocol states
that by knowing [a] automatically, Peggy can convince Victor. Let's use an
example to better understand the problem.This protocol can be used as an
authentication scheme in which, for example, Victor is a bank that holds the
public parameter (B) of Peggy (a client of the bank). The secret number [a]
could be Peggy's secret code (PIN). In order to gain access to her online
account, Peggy has to demonstrate that she knows [a]. In another use case,
we could have Victor as a central unit computational power (server) and
Peggy as a user who wants to connect to the server using an insecure line, or
again (as we will see later), Peggy could be another server, too.The point of
using a ZKP is to avoid Peggy revealing her sensitive data to the public. So,
the underlying problem she has to demonstrate to Victor consists of solving a
challenge in which she can demonstrate that she knows the discrete logarithm
of (B). As we have seen in Chapter 3, Asymmetric Encryption, knowing (B)
and (g) is not enough to compute [a] in this
function: B ≡ g^[a] (mod p) This is because we are operating in modular
functions.Of course, Peggy needs to know [a] if she wants to compute the
verification function, (w): w ≡ k - a*r (mod p-1) There is no way to trick

Victor, who moreover sent (r) to Peggy, which is used in the last verification
function together with (v) and (B), along with (r), to be sure that Peggy
cannot bluff: V ≡ g^w * B^r (mod p) So, I hope to have convinced you that
there is no way for Peggy to trick Victor in this case.

Demonstrating an A Challenge for a disruptive attack on an interactive
ZKP

Now that we have seen that Peggy can't trick Victor, I have propose an attack
against this protocol that I created in late 2018; let's see whether it works or
not.Here, the scope for an attacker (Eve) is to provide a final proof of
verification without knowing the secret number, [a].Step 1: Peggy chooses a
random integer [k] where 1 ≤ k < p-1.Then she calculates the
following: V ≡ g^[k] (mod p) It's when Peggy sends (V) to Victor that Eve
can try to shoot a man-in-the-middle attack.Peggy sends (V) to Victor.Step 2:
Victor chooses a random integer, (r), where 1 ≤ r < p-1.Eve injects V1 ≡
g^k1 (mod p), where [k1] is a number invented by Eve that substitutes
[k].Eve sends (V1) to Victor, substituting her value for Peggy's result. After
receiving (r) from Victor, Eve calculates (v1) as
follows: V1 ≡ g^(v1) * B^r (mod p) This is the path to the attack:

If you can exclude (r) from the final verification function, (V1), then
you have reached the goal.
Essentially, the attacker should find a value for (v1), as follows:

v1 = [x] —————-> V1 = g^k1 Here are some notes:

Remember that you don't have to implement (v1) in the same way the
preceding function (v) did, but you are free to give (v1) any value.
Remember that the earliest point of attack is substituting (V) with (V1),
but that is not mandatory. In this case, the warning is that as you don't
know (r) when you have delivered (V1) to Victor, this parameter can no
longer be changed.
Good luck! If you are able to find a way to trick the Schnorr interactive
protocol, please let me know when you have arrived at a conclusion, and
you will get a cryptographer researcher position.

The preceding analyzed interactive protocol suffers from another problem.
Let's imagine that two people live in different time zones, such as Europe and
Australia. If one is ON, the other one is probably OFF because they're he/her
is sleeping. So, this isn’t probably the most appropriate protocol to use. what
happens if they have to wait for many hours to make or receive an economic
transaction?This protocol doesn't fit well with this kind of purpose, such as
cryptocurrency transactions. Most cryptocurrency protocols use zero-
knowledge algorithms to anonymize data inside their architecture structures.
Now that we know how to implement such a protocol, we can explore zk-
SNARKs.

An introduction to zk-SNARKs – spooky moon math

If you think ZKPs are pretty difficult to understand, that is because you
haven't yet faced off with zk-SNARKs – are a kind of non-interactive ZKP,
that is a little bit complicated so that are also known as spooky moon math.
Here, the situation gets a little bit more complicated, but don't worry – it's not
impossible. In the next section, you will see interesting new attack
possibilities.Non-interactive zero-knowledge proofs, also known as zk-
SNARKs or zk-STARKs, are kinds of ZKPs that require no interaction
between the prover and verifier, like the first protocol we saw in this chapter.
In this section, we are going to focus on zk-SNARKs.The name zk-SNARK
stands for Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge. So, we are facing off with schemes that need only one
interaction between the prover and the verifier.Indeed, zk-SNARKs are very
much appreciated for their ability to anonymize transactions and to identify
users in cryptocurrency schemes, as we will see in this section.The first
cryptocurrency that zk-SNARKs have been adopted in the blockchain as a
scope of authentication and this new system to create consensus .was Zcash.
The use of zk-SNARKs in a blockchain is important, as we will see later, for
the use of smart contracts. As you may know, a smart contract is an escrow of
cryptocurrency activated following the completion of an agreed
execution.Since smart contracts and blockchains are not a part of this book, I
will show just a limited example of how zk-SNARKs work in a
cryptocurrency environment, as it will be useful to understand.For example,
suppose Peggy makes a payment in Ethereum to execute a smart contract
with Victor. In that case, both Peggy and Victor want to be sure that the

execution of the smart contract (for Peggy) and the payment received (for
Victor) are completed successfully. However, many details inherent to the
smart contract will not be revealed. So, the role that zk-SNARKs play is
fundamental to covering these secrets and executing smart contracts. In order
to work, the protocol has to be fast, secure, and easy to implement.As we
have already seen, you will notice that this is just what the purpose of a ZKP
is – to ease the navigation of an untrustworthy environment. Here, we are
talking about blockchains and virtual payments, but essentially the process is
similar.So, in this environment, zk-SNARKs keep secrets by protecting the
steps involved in a smart contract and, at the same time, proving that all these
steps have been executed. This way, they protect the privacy of people and
companies.Remember that – not because you have to be super-skeptical, but
because you should be realistic – this statement is true under determinate
conditions, which I will try to explain as follows:

The proof given by the prover holds the same computational degree of
difficulty as the underlying algorithm chosen as a proof of knowledge.
There is no mathematical way to trick the verifier with a shortcut or fake
proof (such as substituting fake parameters into the V1 ≡ g^(v1) * B^r
(mod p) equation in order to avoid knowing [a]).

So, let's see how a zk-SNARK works.

Understanding how a zk-SNARK works

In this section, first of all, I will try to synthesize how zk-SNARKs generally
work, and then we will return with a zk-SNARK protocol related to a proof
of knowledge based on a discrete logarithm.As we already have seen for the
other ZKPs, a zk-SNARK is composed of three parts or items – (G), (P), and
(V):

G: This is a generator of keys, made by a private parameter (the
statement or another random key) that generates public parameters given
by private keys.
P: This is a proof algorithm that states what the prover wants to
demonstrate.
V: This is a verification algorithm that returns a TRUE or FALSE

Boolean variable from the verifier. I will demonstrate now that using
ZKPs (and, in particular, zk-SNARK protocols) is not enough to keep
[w] secret, but it is possible to arrive at proving the statement as TRUE
if it is also FALSE.

Let's look at how a similar protocol example explained in the Interactive ZKP
section (Schnorr) would work in a non-interactive way (zk-SNARK mode).In
this protocol, we have Anna as the prover and Carl as the verifier.Here, Anna
has to prove that [a] is known to her.Anna calculates her private key, (y),
given by the following: y ≡ g^a (mod p) (g) is a generator (as in D-H or
other private-public algorithms we have already seen in this book).Then,
Anna picks up a random value, [v], inside p-1, which she keeps secret, and
consequently, she can calculate the following: t ≡ g^v (mod p) Anna
calculates (c) as a hash function of the three parameters, (g, y, t), and she can
compute (r) as follows: r ≡ v – c*a (mod p-1) The verifier, Carl, can
check the following: t ≡ g^r * y^c (mod p) Finally, if the verification
validates the two terms of the function, then Carl accepts that the statement
[a] proposed by Anna is TRUE.Now that we have analyzed how this ZKP
works in a zk-SNARK environment, let's see an attack on this protocol before
we cover a numerical example.

Demonstrating an attack on a zk-SNARK protocol

This attack was performed by me in June 2019 and just goes to show that
nothing is completely secure.Let's say that Eve is an Artificial Intelligence
(AI) server. We suppose that Eve (AI) intercepts the H(g, y, t) public hash
function and performs a MiM attack. While Peggy sends (V) to Victor, Eve
substitutes (c) = H(g, y, t) with (c1) = H1(g, y, t1), remembering that (H) is
the hash function and that (t1) is given by the
following: t1 ≡ g^v1 (mod p) As you have probably noticed, substituting
(v) with (v1) is the same trick that substituted (k) with (k1) in the previous
attack.Simply, Eve can put (r1) as follows: r1 = v1 Now, Eve orders the AI
(the intelligent third server connected to the internet) to send to Carl (r1, v1,
c1), who can verify the following: t1 ≡ g^r1 * y^c1 (mod p) It's simple to
demonstrate that t1 = g^v1 because of the
following: y^(p-1) ≡ 1 (mod p) Finally, as we have assigned c1 = p-1 and
r1 = v1, the final effect will be as

follows: t1 ≡ g^v1 ≡ g^v1 * 1 (mod p) Numerical
example: p = 3571g = 7x = 23 Anna's public key is as
follows: y ≡ g^x (mod p)7^ 23 = 907 (mod 3571)y = 907 Now, I will
show you how Anna can demonstrate to Carl to get the secret number, [x].
She chooses v = 67, as follows:
t ≡ g^v (mod p)7^ 67 = 584 (mod 3571)t = 584 Let's suppose that hash
(g, y, t) as follows: c = 37 She computes r as
follows: r ≡ v - c*x (mod p-1)(67 - 37*23) ≡ 2786 (mod 3570-1)r = 2786
sends (r, t, c) = (2786, 584, 37) to Carl. Carl can verify the
following: g^r * y^ c ≡ t (mod p-1)7^2786 * 907^37 = 584 (mod 3571)
the AI intercepts the public parameters (y), (t), and (r). Eve leaves the (y)
invariant, but she changes (t) with (t1) and (r) with (r1), performing a man-
in-the-middle attack: v1 = 57 Eve calculates the
following: t1 ≡ 7^57 (mod 3571)t1 = 712v1 = r1 = 57c1 = p-1 = 3570 Eve
sends (r1, t1, c1) = (57, 712, 3570) to Carl. Carl verifies the
following: t1 ≡ g^r1 * y^c1 (mod p) I highlighted the parameter that Eve
substitutes, (t1, r1, c1); she left the (y, g, p) invariant.Substituting the new
parameters into the equation of verification, we have the
following: 7^57 * 907^3570 ≡ 712 (mod 3571) Indeed, Carl is able to
verify that t1 = 712 corresponds with the parameters received from
Eve.Essentially, if Carl is not able to recognize that r1 = v1 and/or he doesn't
accept c = p-1, then the trick is done, and Eve can replace Anna.So, what are
the protections to adopt against this attack? If this attack is implemented in a
more sophisticated mode, it will probably be very difficult to avoid it.Note
that the parameter (y), the public key of Anna that "envelopes" the private
key [a] object of the statement, hasn't been modified during the
attack.Anyway, zk-SNARKs can be implemented using other methods and
protocols to prove statements; we will see what these algorithms and
protocols are in the next section. Blockchains and cryptocurrency are
evolving quickly to find new methods to authenticate users anonymously.
However, with this topic being relatively new, it is better to make the effort to
find all the possible attacks and the repair methods for them.

How to use Zk-SNARKs in Zcash cryptocurrency in a nutshell

In this section, we will analyze the zk-SNARK behind Zcash, a new in
cryptocurrency giving you the basic information necessary to discover this

world.that aims to preserve the security and privacy of transactions, as
discussed in a scientific paper released on November 12, 2020 (Demystifying
the Role of zk-SNARKs in Zcash):"The underlying principle of the Zcash
algorithm is such that it delivers a full-fledged, ledger-based digital currency
with strong privacy guarantees and the root of ensuring privacy lies fully on
the construction of a proper zk-SNARK."A blog about Zcash stated the
following regarding zero-knowledge proofs: allow one party (the prover) to
prove to another (the verifier) that a statement is true, without revealing any
information beyond the validity of the statement itself. In a version of zero-
knowledge called "proof of knowledge," the prover can demonstrate a
statement without revealing any sensitive information about the content. But,
as we have seen until now, these protocols are based on problems that are
difficult to solve, such as factorization and discrete logarithms, and we have
seen in the previous sections how some of them could be vulnerable to
various kinds of attacks. A reason why you should adopt a ZKP is to
authenticate yourself without revealing too much information about your
sensitive data or your server's identity. Another reason for using a ZKP is to
prove that you know something that you want to keep secret. Here, we have
two main different cases:

In the first case, it is supposed that the verifier doesn't know the content
of the statement.
In the second case, it is supposed that the verifier already knows the
content of the statement, and only has to verify its correctness.

All that becomes much more complicated if you decide to adopt a non-
interactive protocol instead of an interactive protocol because, in the first
case, the verifier does not need to give any further input. Indeed, as you can
see, if a parameter is exchanged between the prover and the verifier, that
could increase the security of the algorithm. On the other hand, we know that
interactive protocols need many steps to reach the goal, hence they are not
used as much as non-interactive protocols. As we have seen in the previous
sections, I have shown some attacks that are capable of deceiving the verifier,
making them believe something that isn't true; moreover, if the verifier
doesn't know the content of the statement, it is even easier to send fake
mathematical parameters to trick them.Now, the situation is changing fast in
cryptography, for two reasons:

The need for cryptography to address privacy and anonymize data for an
increasing number of transactions over the internet and in e-commerce
The rise in the use of digital payments and cryptocurrency

To anonymize exchanges of digital money and to ensure the privacy of users
in cryptocurrency transactions, zk-SNARKs are adopted in several cases. The
verifications used for the two main problems we have seen (RSA and the
discrete logarithm) are almost obsolete. They are leaving room for new and
more sophisticated, hard-to-solve problems; in Zcash, we see one such use
case.To get perfect zero-knowledge privacy, Zcash implemented a complex
system of functions to determine the validity of a transaction. In Zcash's
consensus system, using zk-SNARKs, the objective is to return a response on
the validity of a transaction without knowing anything about the content and
terms of the transaction itself.Zcash adopts a complex scheme to anonymize
transactions and obtain a final answer as to whether transactions are valid.
Here, I have tried to schematize the circuit:Computation → Arithmetic circuit
→ R1CS → QAP → zk-SNARK

Figure 5.2 – Circuit flow

Let's analyze what these functions represent one by one.The first step is
turning transaction validity into a mathematical function, which finally has to
be gathered into a logical expression. This step is taken by creating an
arithmetic circuit similar to a Boolean circuit (we saw this in Chapter 2,
Introduction to Symmetric Encryption, and Chapter 3, Asymmetric
Encryption) made by mathematical base operations (+, -, *, and /) and
computed by Boolean operators (AND, OR, NOT, and XOR), so that the
program converges into only one gate, which is the result of all the
operations chained together, as we can see in the following example of
computing the expression (a+b)*b*c:

Figure 5.3 – An example of an arithmetic circuit. Inputs: a, b, and c. Output:
(a+b)*b*c

As you can see, the arithmetic (or algebraic) circuit converges in only a
single gate all the operations performed on the inputs: a, b, and c. Looking at
this circuit, from left to right, we have the single terms (a, b, and c); first, (a)
is added to (b), then (b) is multiplied by (c), and finally, the result is
multiplied by the result of the previous sum. All that is mathematically
expressed in only one final gate. We can represent layers and layers of these
operations, reducing them all to one arithmetic circuit.The second step is a
Rank 1 Constraint System (R1CS) representation. In R1CS, we have a
group of three vectors (A, B, and C), as you can see in the following figure.
The solution to satisfy the system is a new vector (S) given by an operation of
a (.) dot product between the vectors, of which the final result has to be zero.
So, R1CS has this scheme of operations and must satisfy the following
equation with a result of zero: (S ● A) * (S ● B) - (S ● C) = 0 For
example, this is a satisfied R1CS system:

Figure 5.4 – An example of a satisfied R1CS system

As you can see in Figure 5.4, the value of the vector [S] is [1, 3, 35, 9, 27,
30], which ensures a satisfied R1CS system. Indeed, if you look at column
[A], the result of the operations (.) at the end of the column is as
follows: [1.5 + 3.0 + 35.0 + 9.0 + 27.0 + 30.1] = [5 + 0 + 0 + 0 + 0 + 30] = [35]
result of the operations in column [B] is as follows:
[1.1 + 3.0 + 35.0 + 9.0 + 27.0 + 30.0] = [1 + 0 + 0 + 0 + 0 + 0] = [1]

the result of the operations in column [C] is as follows:
[1.0 + 3.0 + 35.1 + 9.0 + 27.0 + 30.0] = [0 + 0 + 35 + 0 + 0 + 0] = [35]

R1CS checks whether the values are traveling correctly. It's a verification of
the values. In our example in Figure 5.4 for instance, R1CS will confirm that
the value coming out of the multiplication gate where (b) and (c) went in is
(b*c).In the third step, Zcash converts R1CS flat code to a Quadratic
Arithmetic Program (QAP), which operates on polynomials in (mod x).So,
the next step is taking R1CS and converting it into QAP form, which
implements the same logic as before, except using polynomials instead of dot
(.) products between vectors. As I told you before, I will limit myself to
explaining the Zcash process at a high level, so I will not go any deeper in
analyzing the third step of the QAP. At this point, can you guess why the

inventors of Zcash put so much effort into this system? It is probably because
the inventors aspired to create the perfect ZKP. Indeed, in the paper entitled
Aurora: Transparent Succinct Arguments for R1CS, the authors stated that
their goal is to obtain transparent zk-SNARKs that satisfy the following
conditions:

Post-quantum security: This is motivated by the desire to ensure the
long-term security of deployed systems and protocols.
Concrete efficiency: We seek argument systems that not only exhibit
good asymptotics (in argument size and prover/verifier time), but also
demonstrably offer good efficiency via a prototype.

Given the high expectations predicted by the authors for this protocol, let's go
on to explore the final steps of the sequence. This protocol offers a
probabilistic solution by performing a multiplication of polynomials. If the
two polynomials match at a random point, we can be confident that the
chosen point verifies the proof correctly. The reason for this transformation is
that instead of checking the constraints individually, as in R1CS, we can now
check all the constraints at the same time. Here, you can see an example of
how the vector verification looks in a QAP:

Figure 5.5 – An example of the vector verification in a QAP

Can you recognize the differences between this representation and the
checksum in R1CS?In both cases, if the logic gate is equal to zero, the result
given by the dot (.) product of the checks passes; if at least one of the (x)
coordinates gives a non-zero result, this means that the values going into and
out of that logic gate are inconsistent.But at this point, there could be a
problem: if someone knows in advance which point the verifier chooses to
check the validity, they can generate an invalid polynomial, but it could still
satisfy that point.Essentially, this is a dangerous step and could be vulnerable
to attacks. To overcome this problem, Zcash applied sophisticated techniques
to zk-SNARKs in order to evaluate the polynomials blindly. These
mathematical techniques used in Zcash, such as homomorphic encryption and
pairings of elliptic curves, help to blind the operations but increase
complexity. We will look at these issues in the next section, but now we will
finish discussing the entire process of zk-SNARKs in Zcash. As I said at the
beginning of the Zcash explanation, the goal of the protocol is to determine
whether a statement (in this case, a transaction) is true or false, thereby
preventing the double-spending problem.

Conclusions and the weaknesses of zk-SNARKs in Zcash

As we saw in the previous section, one of the weak points of this protocol can
be found in QAP. As I have explained, Zcash has tried to overcome this
problem using homomorphic evaluation, in other words, keeping the
polynomials in blind. The issue is that homomorphic encryption usually
causes bit-overflow; moreover, the protocols and schemes required to achieve
fully homomorphic encryption are very complex. As you already know, my
theory is that in cryptography, complexity is the enemy of security. I won't
enter this debate now because it's not within the scope of the book to analyze
the entire protocol of Zcash. Imagine the scenario discussed in the Non-
interactive ZKPs section based on the RSA problem. If I have to demonstrate
to an expert that I hold the formula for an atomic bomb, then the experts will
probably ask me to show something more than a hash function of the
document, [m], that states the proof. The verifier will be convinced only
when they get substantial proof. In other words, ZKPs are limited in the
amount of evidence of knowledge they are able to provide.

One-round ZKP

In this section, we'll explore a little-known ZKP composed of only one round
of encryption that was presented by two researchers, Sultan Almuhammadi
and Clifford Neuman, of the University of Southern California, which
purports to give proof of knowledge for a challenge in just one round. The
paper states the following: “The proposed approach creates new protocols
that allow the prover to prove knowledge of a secret without revealing it.”
The researchers also proved that a non-interactive ZKP is more efficient in
terms of computational and communications costs because it saves execution
time and reduces latency in communication. ZKPs are used in many fields of
information technology, such as e-commerce applications, smart cards,
digital cash, anonymous communication, and electronic voting.
Almuhammadi and Neuman sought to satisfy the requirements of ZKPs but
in just one round, eliminating any iterative mathematical scheme that would
entail high computation and communication costs.So, let's dive deep to
analyze this one-round ZKP and see how it works.Let's say that Peggy wants
to demonstrate to Victor that she knows a discrete logarithm (we'll be
focusing on a discrete logarithm, but the protocol can work for other
problems); in order to do this, Peggy has to demonstrate that she knows [x],
as follows: g^[x] ≡ b (mod p) Victor launches a challenge (c) to verify
whether Peggy really knows [x]. He picks up a random [y] and calculates the
preceding function: c ≡ g^[y] (mod p) Victor sends (c) to Peggy. She
inserts the parameter [x] on (c), computing (r) as
follows: c^[x] ≡ r (mod p) Peggy sends (r) to Victor, who can verify the
following: r ≡ b^[y] (mod p) Finally, Victor accepts the verification if (r)
corresponds to V = b^[y] (mod p).This protocol looks very simple and
straightforward. It is based on the computational difficulty to calculate the
discrete logarithm, as you have seen in previous cases. But to help you better
understand the operations, I will show how it works mathematically and
demonstrate a numerical example in the next section.

How it works mathematically

The first question is: why are the parameters (r and V) mathematically
identical?Here, you can find the

answer: r ≡ c^[x] ≡ g^[y]^[x] ≡ g^[y*x] (mod p)V ≡ b^[y] ≡ g^[x]^[y] ≡ g^[x*y] (mod p)
you can see, r ≡ V ≡ b^y (mod p).Numerical exampleLet's look at a
numerical example: p = 2741g = 7 x = 88 is the secret number that Peggy
has to demonstrate that she knows.The statement is as
follows: g^x ≡ b (mod p)7^88 ≡ 1095 (mod 2741)b = 1095 Victor
chooses a random number: y = 67 Victor calculates the following:
g^y ≡ c (mod p)]7^67 ≡ 1298 (mod 2741)c = 1298 Peggy, after having
received (c), calculates the
following: c^x ≡ r (mod p)1298^88 ≡ 361 (mod 2741)r = 361 Peggy
sends (r) to Victor, who can verify the
following: b^y ≡ V (mod p)1095^67 ≡ 361 (mod 2741)V = 361 = r Finally,
it is verified! As you can see, we have proved the one-round ZKP with the
help of a numerical example. In the next section, I will demonstrate the
strong similarity of this protocol with a protocol we have analyzed before in
this book: Diffie-Hellmann (D-H).

Notes on the one-round protocol

Having analyzed this protocol, you may have noticed that it is similar to the
D-H exchange. Undoubtedly, the authors of the one-round ZKP were well
aware of that. Still, even though the aim of the one-round ZKP is different
from that of D-H, I will compare the two algorithms so that you can see what
similarities there are. In the second part of the analysis, we will see how
efficient this protocol is. Indeed, with only two steps, Peggy can demonstrate
to Victor that the statement [x] is valid.Now, we can reassemble the one-
round protocol using the following method: Step 1: Peggy
g^x ≡ b (mod p) That is the same in D-H as the
following: g^a ≡ A (mod p) Step 2: Victor g^y ≡ c (mod p) That is the
same in D-H as the following: g^b ≡ B (mod p) Step 3: Peggy
c^x ≡ r (mod p) In D-H, this becomes the shared key
H: B^a ≡ H (mod p) Step 4: Victor b^y ≡ r (mod p) In D-H, this again
becomes the shared key H: A^b ≡ H (mod p) So, [H] is the shared
private key that "Alice and Bob" (here, Peggy and Victor) use to compute in
D-H. Here, it is just [r = H] that gives the proof to Victor.So, we can
certainly say that Sultan and Clifford's protocol is identical to D-H, as
discussed in Chapter 3, Asymmetric Encryption.This protocol undoubtedly
verifies that Peggy knows [x]. She can demonstrate it to Victor even if Victor

doesn't know [x]. That is the exciting point, and the innovation of this
protocol: even if Victor doesn't know [x], by using this protocol, he can be
confident that Peggy knows it. In other words, what the authors of this
protocol did was apply the D-H protocol to the ZKP use case. If you look at
the simplified version of the protocol shown below, you will get an even
better understanding of the steps required. There are only two, essentially:

Initialization of the parameters for Peggy is g, b, p, and x.
Victor generates a random y.

Step 1: Victor sends the following to Peggy: c ≡ g^y (mod p) Step 2:
Peggy sends the following to Victor: r ≡ c^x (mod p) Instantly, Victor can
verify the following: r ≡ b^y (mod p) As you can see, there are only two
steps required to perform this protocol and verify the statement [x] through
Victor's validation of the parameter (r). This protocol gave me the inspiration
to build a new protocol, which we will explore in the next section. My
research has allowed me to reduce the number of steps to one.

A new Algorithm proposed by the Author: ZK13 – a ZKP for
authentication and key exchange

The ZK13 protocol was invented and patented by me in 2013. It's a non-
interactive protocol that solves an issue that was very important to my
Crypto Search Engine (CSE) project (explained in Chapter 9):
authentication without the need of a public key. In this section, we will
analyze this ZKP that's used for authentication. It doesn't matter whether it's
humans or computers; we could call this protocol a ZK-proof of
authentication. To better understand the problem, imagine Alice and Bob
want to share a common secret, something that only they know. Let's say that
the secret is the answer to the following question: how many birds were
counted at the lake shoreline today? The answer is known only to Alice and
Bob, unless they have revealed it to someone, but this is a problem we will
take into consideration later. For now, nobody else can know the answer
except Alice and Bob. We can consider the number of birds counted as a
shared secret, a key that doesn't need to be exchanged. It is shared by Alice
and Bob, a key that is implicitly formed by a common experience. So,
besides the authentication problem, there is also the problem of verifying a

private Pre-Shared Key (PSK). Indeed, under ZK13, Alice tells Bob to use
the secret shared key (the number of birds counted) as a secret password,
[private key]. What's even more interesting here (and this is where it really
differs from the D-H key exchange algorithm we saw before) is that the
secret key is not really exchanged at all, but instead is simply something that
is known to both parties and is only verified.So, the problems that this ZKP
can solve are several. Here, we will just consider the authentication problem.
Later in the book, we will analyze how to use a ZKP to exchange a shared
private key. In 2013, I was drawing up the architecture of the CSE, a project
that has absorbed a large part of my professional life We will talk in detail
about the CSE in Chapter 9, Crypto Search Engine. At the time, one of the
toughest problems to solve with the CSE's architecture was finding a
cryptographic method to identify the Virtual Machines (VMs) network.
Since the algorithm chosen was symmetric, the problem was to find a method
of authentication that would work with the symmetric algorithm. As you
already know from Chapter 2, Introduction to Symmetric Encryption, it's
common to think that symmetric algorithms don't have a digital signature
method of authentication because they do not have public keys. At first
glance, it doesn't seem easy to find such a method of authentication, but it can
be possible if the process starts with a shared secret. The goal was to prevent
a man-in-the-middle attack by an external hostile VM against a network.To
overcome all these issues, I considered implementing a new ZKP. Taking a
look at the most popular ZKPs, I did consider Schnorr (presented earlier in
this chapter) as a candidate. But an interactive protocol didn't fit well. This
scheme needs more steps between the prover and verifier, generating latency
in the communication. So, I decided to implement a new personal zero-
knowledge non-interactive protocol.After many studies and a pinch of
inventiveness, I designed ZK13. Before analyzing it, I will explain what
constraints I worked under:

The secret shared key (the challenge) has to be embedded inside the VM
database. Therefore, engineers could inject the secret parameter [s] into
both of the VMs without exchanging any keys through an asymmetric
algorithm.
The goal of ZK13 is to enable parties to identify each other by sharing a
small amount of sensitive information. This means exchanging only the
minimum amount of sensitive information (that is, the hash of [m]:

H(m) instead of [m] itself) that needs to be shared. Indeed, the greater
the amount of information exchanged, the greater the vulnerability to
attack becomes.
ZK13 had to be a simple and, as I have already said, non-interactive
protocol. Therefore, only one piece of information should be required by
the prover. The reasons for this are twofold: first, to avoid an excess of
information being exchanged (see the previous point) because that could
compromise security. The second reason is related to the goal of the
application: the CSE is a platform on which encrypted data is searched
and retrieved using the cloud or external servers. Because a search
engine has to be fast, queries should be fielded and answers given in the
least amount of time possible. So, it is crucial to avoid latency during the
authentication phase.
Another constraint of ZK13 was for it to use the best and most secure
authentication methods. At the time that it was conceived (2011–2013),
the quantum computing era was not yet seen as dangerous for
cryptography. So, the underlying problem on which the system relied
was the discrete logarithm, which is still considered a hard problem.

ZK13 explained

The ZK13 protocol, with only one transmission and a shared secret, is
presented as follows:

Figure 5.6 – The scheme of the shared hash[s] secret

Let's dive deeper into ZK13 and see how it works.Bob (VM-1) has to prove
that he knows the secret, [s], to Alice (VM-2) in order to send Alice a set of
encrypted files using the CSE system. Remember that [s] is stored inside the
brains of both Alice and Bob, the two VMs, as an innate native injected
secret.Bob picks a random number [k] (the (G) element of a zk-SNARK or
the random key generator). This random number, [k], is generated and
destroyed in each session:Public parameters:p: This is a prime number. g:
This is the generator. Key initialization:[k]: This is Bob's random key.
Secret parameters:[s]: This is the common shared secret.H[s]: This is the
hash of the secret, [s].Step 1a: Bob calculates (r) as
follows: r ≡ gk (mod p) r ≡ g^k (mod p) Let's say that the secret shared is
[s], but effectively, the VM operates with H[s], the hash functions of [s].Step
1b: Bob calculates [F], a secret parameter, which is changed in each session
(just because [k] changes): H[s]*k ≡ F (mod p-1) Now, with (g) raised to
[F], Bob proves (P), which is the second element of the zk-
SNARK: gF ≡ P (mod p) Bob sends the pair (P, r) to Alice.Step 2: The
verification step (V) validates the prove, (P), based on the
function: [s] ——> H[s]r[Hs] ≡ gF (mod p) If:
V ≡ r[Hs] = P (mod p) Alice proceeds to make a hash of [s]: H[s], and

then she accepts the authentication if V = P; if ((V) is not equal to (P)), she
doesn't accept the validation.In this case, as we have supposed in the initial
conditions, [s] is supposed to be known by Alice.As you can see, ZK13
works in only two steps, but the verifier (in this case, Alice) must know the
secret, [s]; otherwise, it is impossible to verify the proof.Numerical
example:Now, let's see a numerical example of the ZK13 protocol:Public
parameters: p = 2741g = 7 Secret
parameters: H[s] = 88k = 23 g^k ≡ r (mod p)7^23 ≡ 2379 (mod 2741)r = 2379
Bob calculates [F] and then
(P): [Hs] * k ≡ F (mod p-1)88 * 23 ≡ 2024 (mod 2741-1)F = 2024g^F ≡ P (mod 2741)7^2024 ≡ 132 (mod 2741)P = 132
verifies the
following: r^[Hs] ≡ P (mod p)2379^88 ≡ 132 (mod 2741) Alice double-
checks whether [Hs] = [s]; if it's TRUE, then it means that Bob does know
the secret, [s]. Now that we have proven that ZK13 works with a numerical
example, I want to demonstrate how it works mathematically.

Demonstrating the ZK13 protocol

Since P ≡ g^F (mod p), what we want to demonstrate is the
following: P ≡ gF ≡ rs (mod p) (Here, I use [s] for the demonstration
instead of H[s].)As r ≡ g^k (mod p), substituting (r) in the preceding
equation, we have the following: P ≡ gF ≡ (g^k)^s (mod p) We also know
that F is the following: F ≡ s*k (mod p-1) Finally, for the properties of the
modular powers substituting both [F] and (r), we get the
following: P ≡ gs*k ≡ (g^k)^s ≡ g^k*s (mod p) Basically, I have
substituted the parameter (P), the proof created by Bob, with the elements of
the parameter itself, demonstrating that the secret, [s], is contained inside (P).
So, (P) has to match with the ephemeral parameter (r)^[s] generated by Bob
and sent to Alice together with the proof, (P). If Alice knows [s], then she can
be sure that Bob also knows [s] because (P) contains [s]. That's what we
wanted to demonstrate.

Notes and possible attacks on the ZK13 protocol

You will agree with me that using this protocol, it is possible to determine
proof of knowledge of the secret, [s], in only one transmission. During the
explanation of the algorithm, I have divided it isnto three steps, but actually,

there are only two steps (with only one transmission), because the operations
of (G) key generation are offline. So, steps 1a and 1b can be combined into
effectively only one step.

Possible attacks on ZK13

Let's say Eve (an attacker) wants to substitute herself for Alice or Bob,
creating a man-in-the-middle attack.This could be done as follows.Eve
replaces (r) with (r1), generating a fake (k1), by calculating the
following: r1 ≡ g^k1 (mod p) But when Eve computes [F], she doesn't
know H[s] (because it's assumed that [s] will remain secret). So, this attack
fails.Instead, she can collect (r, P) and replay these parameters in the next
session, activating a so-called replay attack. This attack could be avoided
here, because (r) is generated by a random [k], so it is possible to avoid
accepting an (r) already presented in a previous selection. So, that was one
attack that could be faced, and we saw how to avoid it.

Summary
Now you have a clear understanding of what ZKPs are and what they are
used for.In this chapter, we have analyzed in detail the different kinds of
ZKPs, both interactive and non-interactive. Among these protocols, we saw a
ZKP that used RSA as an underlying problem, and I proposed an original
way to trick it.Then, we saw the Schnorr protocol implemented in an
interactive way for authentication, on which I have proposed an attempt to
attack.Moving on, we explored the zk-SNARKs protocols and spooky moon
math, just to look at the complexity of some other problems. Among them,
we saw an interesting way to attack a discrete logarithm-based zk-SNARK.
We dived deep into Zcash and its protocols to see how to anonymize the
transactions of this cryptocurrency. Later in the chapter, we encountered and
analyzed a non-interactive protocol based on the D-H algorithm. Finally, we
explored ZK13, a non-interactive protocol, and its use of shared secrets to
enable the authentication of VMs.Finally, we explored the zkSNARKs in the
world of Cryptocurrencies, expecialy used to anonymize the transactions.You
became familiar with some schemes of attacks, such as man-in-the-middle,
and used some mathematical tricks to experiment with ZKPs.The topics

covered in this chapter should have helped you understand ZKPs in greater
depth, and you should now be more familiar with their functions. We will see
in later chapters many links back to what we explored here. Now that you
have learned the fundamentals of ZKPs, in the next chapter, we will analyze
some private/public key algorithms that I have invented.

7 Elliptic Curves

Join our book community on Discord
https://packt.link/SecNet

Elliptic curves are the new frontier for decentralized finance. Satoshi
Nakamoto adopted a particular kind of elliptic curve to implement the
transmission of digital currency in Bitcoin called secp256K1. Let's see how it
works and what the main characteristics are of this very robust encryption.In
this chapter, we will learn the mathematical basics of elliptic curve
cryptography. This topic involves geometry, modular mathematics, digital
signatures, and logic.Moreover, I will present the special kind of elliptic
curve implemented for the digital signature of Bitcoin known as secp256K1.
Finally, we will discuss the possibility of an attack on elliptic curves. So, in
this chapter, we will cover the following topics:

The genesis of cryptography on elliptic curves
Mathematical and logical basics of elliptic curves
The Diffie–Hellman key exchange based on elliptic curves
An explanation of ECDSA on secp256K1 – the digital signature of
Bitcoin
Possible attacks on elliptic curves

Let's dive deep into this intriguing topic, based on geometry and applied in
cryptography.

https://packt.link/SecNet

An overview of elliptic curves
Around 1985, Victor Miller and Neal Koblitz pioneered elliptic curves for
cryptographic uses. Later on, Hendrik Lenstra showed us how to use them to
factorize an integer number.Elliptic curves are essentially a geometrical
representation of particular mathematical equations on the Cartesian plane.
We will start to analyze their geometrical models in the 2D plane, conscious
that their extended and deeper representation is in 3D or 4D, involving
irrational and imaginary numbers. Don't worry now about these issues; it will
become clearer later on in this chapter.Elliptic Curves Cryptography
(ECC) is used to implement some algorithms we have seen in previous
chapters, such as RSA, Diffie–Hellman (D–H), and ElGamal. Moreover,
after the advent of the revolution in digital currency, a particular type of
elliptic curve called secp256K1 and a digital signature algorithm called
Elliptic Curve Digital Signature Algorithm (ECDSA) have been used to
apply digital signatures to Bitcoin to ensure that transactions are executed
successfully.This chapter intends to take you step by step through discovering
the logic behind elliptic curves and transposing this logic into digital world
applications.It has been estimated that using 313-bit encryption on elliptic
curves provides a similar level of security as 4,096-bit encryption in a
traditional asymmetric system. Such low numbers of bits can be convenient
in many implementations requiring high performance in timing and
bandwidth, such as mobile applications.So, let's start to explore the basis of
elliptic curves, which involve geometry, mathematics, and many logical
properties that we have seen in earlier chapters of this book.

Operations on elliptic curves
The first observation is that an elliptic curve is not an ellipse. The general
mathematical form of an elliptic curve is as
follows: E: y^2 = x^3 + ax^2 + bx + c

Important Note

E: represents the form of the elliptic curve, and the parameters (a,
b, and c) are coefficients of the curve.

Just to give evidence of what we are discussing, we'll try to plot the following
curve: E: y2 = x3 + 73 As we can see in the following figure, I have plotted
this elliptic curve with WolframAlpha represented in its geometric form:

Figure 7.1 – Elliptic curve: E: y^2 = x^3 + 73

We can start to analyze geometrically and algebraically how these curves
work and their prerogatives. Since they are not linear, they are easy to
implement for cryptographic scopes, making them adaptable. For example,
let's take the curve plotted previously: E : y^2 = x^3 + 73 When (y = 0),
we can see that, geometrically, the curve intersects the x axis at the point
corresponding to (x = -4.1793…); this is mathematically given if we
substitute y = 0 into the equation: y^2 = x^3 + 73 As a result, one of the
three roots of the curve will be the cubic root of -73.When (x = 0), the curve
intersects the y axis at two points: (y = +/-8.544003…). Mathematically, we
substitute (x = 0) into the equation: y^2 = x^3 + 73 This obtains the
intersection between the curve and the axis of y, as you can see in Figure
7.1.Another curious thing about elliptic curves, in general, is that they have a
point that goes to infinity if we intersect two points in the curve
symmetrically with respect to the y axis. You can imagine the third point as
an infinite point lying at the infinite end of the y axis. We represent it with O
(at the infinity point). We will see this better later when we discuss adding
points to the curve.One of the most interesting properties of elliptic curves is
the SUM value of two points of the curve. As you can see in the following
figure, if we have two points, P and Q, and we want to add P to Q, it turns
out that if we draw a line between P and Q, a third point, -R, is given by the
intersection between this line and the curve. Then, if you take a reflex of
point -R with respect to the x-axis line, you find R; this is the sum of P and
Q. It's easier to take a look at the following diagram to understand this
geometrical representation of the SUM value:

Figure 7.2 – Adding and doubling points on the elliptic curve

Now, let's look at how the addition point will be represented
algebraically.First, we take the coordinates of P and Q, and then calculate (s),
as follows: s = (yP - yQ)/(xP - xQ) To compute xR, the x coordinate of
point R, we have to perform this operation: xR = s^2 - (xP + xQ) To
compute yR, the y coordinate of point R, we have to perform this
operation: yR = s(xP - xR) - yP What about computing P + P = R = 2P,
the so-called point double?If we want to represent a P point added to itself

so that it becomes 2P, the geometrical representation is given by the tangent
passing through the P point and intersecting the curve at the R point, and
again finding the reflexed point of the sum that is the symmetric point R, as
shown here:

Figure 7.3 – 2P point double

Geographically, it is very similar to computing the sum of the point, as we
saw in the preceding example.We have to draw the tangent line in the P
point, and we find the point of intersection between the line and the curve in
the R'=(-2P) point; finally, the reflexed x-axis point on the curve will give
the P double point, that is, R (2P).What about computing P+P algebraically?
In this case, (t) will be the following: t = (3XP^2 + a)/2YP Remember that
(a) is a parameter of the curve.So, to find the x coordinate of R, we have the
following: xR = t^2 - 2XP The equation for the y coordinate of R is as
follows: yR = t (xP - xR) - yP There is one more case we need to address
when we operate with elliptic curves: how to add vertical points.Here is O
represented by the point of infinity, given by the SUM value between P and
Q if xP = xQ:

Figure 7.4 – Adding vertical points

Algebraically, the point at infinity is given as
follows: P + Q = O (point at infinity), if xP = xQ Alternatively, it
can be given like this: P + P = O (point at infinity), if xP = 0 If we
assume that A and B are the two points to add, we can summarize all the
expressions into the following representation:

Figure 7.5 – Operations of addition and multiplication on elliptic curves

Now that we have seen adding and doubling points, let's see how to perform
scalar multiplication, another important operation for cryptography on elliptic
curves.

Scalar multiplication

At this point, we have to get familiar with another typical operation of elliptic
curves, scalar multiplication. This process mathematically represents the
sum between P and Q and makes it possible to calculate 2P, 3P, …, nP on
elliptic curves.The logic behind scalar multiplication is not difficult, but it
needs practice to become familiar with it. Practically, let's solve a
multiplication on the elliptic curve of the following form: Q = n*P This is

called repeated addition, and it can be represented as
follows: Q = {P + P+ P + P…+ P} n-times As we have to add the
coordinates of a point to itself, we can figure out the scalar multiplication as
the sum of a point with itself n times, so we have, for example, the
following: P + P = 2P This, as we have seen, is the formula of double point
(geometrically represented in Figure 7.3) transposed into an algebraic
representation of SUM. Always remember that we are dealing with a curve,
so the coordinates of the new intersection point are as
follows: 2P (X2P, Y2P) For the same logic, we can go on with 3P, 4P, …
7P: R = 3PR = 2P +P Then we follow with 4P: R = 4PR = 2P + 2P Then we
follow with 5P: R = 5PR = 2p + 2P + P Then we follow with
6P: R = 6PR = 2P + 2P +2P Alternatively, it can be given like
this: R = 2(3P)R = 2 (2P+ P) Finally, we have the
following: R = 7PR = P + (P + (P + (P + (P + (P + (P)))))) Alternatively,
it can be given like this:
R = 7PR = P + 6PR = P + 2(3P)R = P + 2(P + 2P) It is called
multiplication, but in reality, scalar multiplication is more of a breakdown of
the R number in a scalar mode because, as you can see, step by step, it is
going to be reduced to the minimal entity of P: so, for instance, 7P becomes a
product of P and 2P.Following this logic, if we have to multiply a K number
with P, we have to break it down to obtain a sum of minimal elements (P+P)
or a 2P double point that will compose the multiplication required. Because
of the formulas, we rely on addition and multiplication, as we saw in Figure
7.5.If we have 9P, for example, we will have the following:
9P = 2(3P) + 3P9P = 2(2P + P) + 2P + P9P = P + 2P + 2(2P+ P) Now
that we have understood this operation's logic, let's discover why these
operations are so important to generate a cryptographic system on elliptic
curves.As we saw in the previous chapters (for example, D–H in Chapter 3,
Asymmetric Encryption) about cryptography, we are looking for one-way
functions. These particular functions allow it to be easy to compute in one
direction but are very difficult to perform in the opposite sense. In other
words, it isn't easy to reverse-engineer the result. Similarly, in elliptic curves,
we have to find a function such as a discrete logarithm that allows us to
perform a one-way function.We'll now define the discrete logarithm problem
transposed on an elliptic curve.It's stated that scalar multiplication is a one-
way function.Given an elliptic curve: E.Known: P, Q is a multiple of P.Find
k: Such that Q = k * P.It is a hard problem to solve. This is called a discrete

logarithm problem of Q to the P base, and it is considered hard to solve
because to find k means to calculate very complex operations. I will proceed
with an example to better understand what we are dealing with.Example: In
the elliptic curve group defined by the following, what is the discrete
logarithm k of Q = (4,5) to the P = (16,5) base?
y2 = x3 + 9x + 17 over the field F23. One (naïve) way to find k is to
compute multiples of P until Q. The first few multiples of P are as follows:
P = (16,5) 2P = (20,20) 3P = (14,14) 4P = (19,20) 5P = (13,10) 6P = (7,3) 7P = (8,7) 8P = (12,17) 9P = (4,5)

9P = (4,5) = Q, the discrete logarithm of Q to the P base is k = 9. In a real
application, k would be large enough that it would be infeasible to determine
k in this manner. This is the fundamental principle behind the D-H algorithm
implemented on elliptic curves that we will discover next.

Implementing the D-H algorithm on elliptic curves
In this section, we will implement the D–H algorithm on elliptic curves. We
saw the D–H algorithm in Chapter 3, Asymmetric Encryption. You should
remember that the problem underlying the D–H key exchange is the discrete
logarithm. Here, we will demonstrate that the discrete logarithm problem
could be transposed on elliptic curves too.First of all, we are dealing with an
elliptic curve (mod p). The base point or generator point is the first element
in the D–H original algorithm represented by (g), and here we denote it by
(G). Let's look at some elements to take into consideration:

G: This is a point on the curve that generates a cyclic group.

Cyclic group means that each point on the curve is generated by a repeated
addition (we have seen point addition in the previous section).

Another concept is the order of G denoted by (n):

ord(G) = n The order of (G) = (n) is the size of the group.The order (n) is
also the smallest positive integer [k], giving us the
following: kG = O (Infinity Point)

The next element to take into consideration is the h cofactor:

h = (number of points on E)/nIn other words, (h) can be defined as the
number of points on E (mod p) divided by the order of the curve (n). h = 1 is
optimal. If h > 4, the curve is more vulnerable to attacks.Let's now analyze
step by step how D–H transposed on E works.Step 1: Parameter
initialization:Now let's look at the public shared parameters to initialize the
D–H model on E (mod p): {p, a, b, G, n, h} p is the (mod p) as we have
already seen in the original D–H algorithm.a and b are the parameters of the
curve.G is the generator.n is the order of G.h is the cofactor.Step 2: Crafting
the shared key on E (mod p): [K] After the parameter initialization, Alice
and Bob will define the type of the curve to adopt among the family of E
(mod p): y^2 = x^3 + ax + b (mod p) Bob picks up a [β] private key such
that 1≤ [β] ≤ n-1.Alice picks up a [α] private key such that 1≤ [α] ≤ n-1.After
choosing random keys, Bob and Alice can compute their public keys.Bob
computes the following: B = [β] * G Alice computes the
following: A = [α] * G Now (like in the original D–H algorithm), there is a
generation of shared keys exchanging the public parameters:

Bob sends B (xB and yB) to Alice.
Alice receives B.
Alice sends A (xA and yA) to Bob.
Bob receives A.
Bob computes the following:

K = [β]*A

Alice computes the following:

K = [α] * B

Finally, Bob and Alice hold the same information: the point on E: [K].

This point, [K], is the shared key between Alice and Bob.

Important Note

If Eve (the attacker) wants to know [K], she has to know [α] or [β],
the private keys of Alice and Bob, given by the following
functions:

B = [β]* G or A = [α]* G

To recover [K], Eve has to be able to solve the discrete logarithm
on E (mod p), which, as we have seen, is a hard problem to solve.

A numerical example is as follows:Let's assume that the domain of the
curve is the following: E: y^2 = x^3 + 2x +2 (mod 17) You can take a
look at this E plotted in Figure 7.6.

Figure 7.6 – The plotted curve used as an example to implement the D–H
algorithm

The generator point is the following: G (5,1) First of all, we have to find the
order of the n curve.To do that, we should calculate all the points until we
reach the minimum integer that allows the cycling group.So, we start to

calculate 2G.Using the formula of the double point, we have the
following: t = (3XP^2 + a)/2YPt = (3*5^2 + 2)/2*1 = 77 * 2^-1 = Reduce[2*x == 77, x, Modulus -> 17] = 13 (mod 17)t = 13
that we have calculated (t), it's possible to use it to find the x and y
coordinates on the 2G curve:
x2G = s^2 -2xG = 13^ 2- 2*5= Mod[13^2 - 2*5, 17] = 6 (mod 17)y2G = s(xG - x2G) -yG = 13 (5-6) - 1 = -13-1 = -14 (mod 17) = 3 (mod 17)

we found the coordinates of 2G: 2G = (6,3) Now, we should go on to
compute 3G, 4G, …, nG until we find the point of infinity, OG.It is a lot of
work to do it by hand, but it is also a good exercise to practice by yourself.I
will let you calculate all the scalar multiplications until the OG point, giving
the results for some
points: G = (5,1)2G = (6,3)3G = (10,6)……9G = (7,6)10G = (7,11) This
continues until it turns out that the point of infinity, OG, is the
following: 19G = OG This means that the order of G is the
following: n = 19 So, the parameters of E are the
following: G = (5,1); n =19 Bob picks up Beta: Beta = 9 Alice picks up
Alpha: Alpha = 3 Bob calculates his public key (B): B = 9G = (7,6) Alice
calculates her public key (A): A = 3G = (10,6) Alice sends (A) to
Bob: [β]*A = 9A = 9(3G) = 8G = (13,7) Bob sends (B) to
Alice: [α]*B = 3B =3*(9G)= 8G =(13,7) So, as you can see, the shared key
is [K] = (13,7).The parameters used in the example are too small to be
implemented in a real environment. In reality, the numbers have to be larger
than the ones I have used in the preceding example. However, this algorithm
is computationally easier than the original D–H one and can be used with
smaller parameters and keys. However, we have to rely on curves that are
well structured and architected by professional cryptographers and
mathematicians.

Important Note

Implementing D–H on E (mod p) doesn't necessarily prevent MiM
attacks, just like in the original D–H algorithm (as seen in Chapter
3, Asymmetric Encryption).

Now that we have more confidence with the elliptic curve and its operations,
we can go through an interesting elliptic curve case, analyzing the algorithm
adopted for the Bitcoin digital signature ECDSA.

Elliptic curve secp256k1 – the Bitcoin digital
signature
ECDSA is the digital signature scheme used in Bitcoin architecture that
adopts an elliptic curve called secp256k1, standardized by the Standards for
Efficient Cryptography Group (SECG).ECDSA suggests (a = 0) and (b =
7) as parameters in the following equation: E: y2 = x3 + 7 For a more
formal presentation, you can read the document reported by the SECG at
https://www.secg.org/sec2-v2.pdf, where you can find the recommended
parameters for the 256 bits associated with a Koblitz curve and the other bit-
length sister curves.This is the representation of secp256k1 in the real plane:

https://www.secg.org/sec2-v2.pdf

Figure 7.7 – secp256k1 elliptic curve

As we know, the elliptic curve has a part visible in the real plane and another

representation in the imaginary plane. The form of an elliptic curve can be
represented in 3D by a torus when the points are defined in a finite field, just
as you can see in the following figure:

Figure 7.8 – 3D representation of an elliptic curve in a finite field

The secp256k1 curve is defined in the Z field as follows:
Z modulo 2^256 - 2^32 - 977 Or, written in a different way, this is how it
looks as an
integer: 115792089237316195423570985008687907853269984665640564039457584007908834671663
this, the coordinates of the points are 256-bit integers in a big modulo p.The
secp256k1 curve was rarely used before the advent of Bitcoin. As you can
imagine, after it was used for Bitcoin, it became popular. Unlike most of her
sisters, which commonly use a random structure, secp256k1 has been crafted
to be more efficient. Indeed, if the implementation is optimized, this curve is
30% faster than others. Moreover, the constants (a and b) have been selected
by the creator with a lower possibility of injecting a backdoor into it, which is
different from the National Institute of Standards and Technology
(NIST)'s other curves.Please note that this last sentence is valid until
proven otherwise.Finally, in secp256k1, the generator (G), the order (n), and
the prime (modulo p) are not randomly chosen but are functions of other
parameters. All that makes this curve one of the best you can implement and
it's useful for the scope of digital signatures. This is the reason why Bitcoin's

developers chose it. In Bitcoin, precisely, we will see how many digits will
be selected for the modulo (p), the order (n), and the base point (G) to make
secp256k1 secure.Let's go on now to explore how the digital signature
ECDSA algorithm is implemented in secp256k1.

Step 1 – Generating keys

The [d] private key is a number randomly chosen within the range 1 ≤ k ≤ n-
1, where (n) is the order of G. This number has to be of a length of 256 bits
so that it computes the hash value of the random number with SHA-256,
which gives as output a 256-bit number. This is the way to be sure that the
number is effectively 256 bits in length. Remember that if the output gives a
number lower than (n-1), then the key will be accepted; if not, it will make
another attempt.The public key (KPub) is derived by the following
equation: KPub = Kpriv*G Thus, the number of possible private keys is the
same as the order of G: n.To calculate the public key (Q), starting from the
private key, [d], in secp256k1, we have to use the following
equation: Q ≡ [d] * G (mod p) The result of the equation will be Q (the
public key).After this operation, we can switch to calculating the digital
signature. Suppose that Alice is the sender of the signature and her [d], (G),
and (Q) parameters have already been calculated. In a real case, Victor is the
verifier (the miner) who has to verify the true ownership. Let's go on to see
how to sign a Bitcoin transaction in secp256k1.

Step 2 – Performing the digital signature in secp256k1

Remember that to sign a document, [M], or, even better in this case, a value
in Bitcoin, [B] (as we discussed in Chapter 4, Introducing Hash Functions
and Digital Signatures), it is always recommended to compute Hash[B] =
z.So, we will sign (z), which is the hash of the message, and not [M] directly.
Another parameter that we need is [k], which is an ephemeral key (or session
key).The sub-steps to perform the digital signature (S) are similar to those for
a public/private key algorithm. The difference here is that the discrete
logarithm is obtained through a scalar multiplication:

Alice chooses a random secret, [k], which gives us the following: [1≤ k
≤ n-1].

She calculates the coordinates, R(x,y) = k*G.
Alice finds r ≡ x (mod n) (the x coordinate of R(x,y)) .
Alice calculates S ≡ (z + r*d)/ k (mod p) (this is the digital signature).

Alice sends the (r and S) pair to Victor for verification of the digital
signature.

Step 3 – Verifying the digital signature

Victor receives the (r and S) pair. He can now verify whether (S) has really
been performed by Alice.To verify (S), Victor will follow this protocol:

Check whether (r) and (S) are both included between 1 and (n-1).
Calculate w ≡ S^(-1) (mod n).
Calculate U ≡ z * w (mod n).
Calculate V ≡ r * w (mod n).
Compute the point in secp256k1: R (x,y) = UG + VQ.
Verify that r ≡ Rx (mod n).

If (r) corresponds to Rx (mod n) – the x coordinate of the R point – then the
verifier accepts the signature (S) corresponding to the value of Bitcoin, [B],
the owner of which claims to own the amount of Bitcoin declared.Without
the support of a practical example, it is rather difficult to understand such a
complex protocol. Some of the operations performed on secp256k1 for the
digital signature of a Bitcoin transaction are quite complex to interpret and
need a practical example to understand.

A numerical exercise on a digital signature on
secp256k1
In this section, we will deep dive into the digital signature of secp256k1 in
order to understand the mechanism behind the operations of implementation
and validation of the digital signature.Suppose for instance that the
parameters of the curve are the
following: p = 67 (modulo p)G = (2,22)Order n = 79Private Key: [d]= 2
as we have chosen a very simple private key, it is just enough to perform a

double point to obtain the public key (Q): Q = d*G In this case, we proceed to
calculate the public key (Q). First, we will be using the following formula to
calculate the double
point: t = (3XP^2 + a)/ 2YPt = (3*2^2 + 0)/ 2*22= 12/ 44 = Reduce[44*x == 12, x, Modulus -> (67)] = 49t = 49
Q = d * G using numbers implies replacing [d] and (G) with
numbers: Q = 2 *(2,22) Relying on the formula of the double point, let's
find the coordinates of Q (x and y), starting with x:
xQ = t^2 - 2XGxQ ≡ 49^2 – 2 * 2 = 52 (mod 67)xQ = 52 In the same
way, let's find the y coordinate of
yQ: yQ = t(xG - xQ) - yGxyQ ≡ 49 (2 -52) - 22 = 7 (mod 67)yQ = 7 So,
the coordinates of the public key (Q) are as
follows: Q (x,y) = (52, 7) Now, Alice can perform her digital signature
(S). First, Alice computes the H[M]= z hash.Suppose, z = 17 is the hash of
the [B] value of the Bitcoin.Alice chooses a random secret number for the [k]
session key: k = 3 Alice calculates the R(x,y) = k*G
coordinates: k*G = 3 * (G) = G + 2G We have already calculated 2G =
(52,7), so it's possible to rely on the additional formula to calculate G + 2G =
(2,22) + (52,7). Let's recall the formulas of point addition on elliptic
curves: t1 = (yQ-yG)/(xQ-xG) To compute xR (the x coordinate of the R
point), we have to solve this
operation: t1 ≡ (7 – 22)/(52 – 2) (mod 67)t1 ≡ 60 (mod 67) We are
seeking
[xR]: xR ≡ t1^2 - (xG + xQ) (mod 67)xR ≡ 60^2 - (2+52) = 62 (mod 67)
consider the x coordinate of R: r = 62 (mod 79) = 62 At this point, we can
perform the signature applying the
formula: S ≡ (z + r*d)/k (mod p)S ≡ (17 + 62 * 2)/3 (mod 67) = 47 We
have gained a very important point – the signature (S): S = 47 Alice sends
the (S = 47, r = 62) pair to Victor.To verify the digital signature, Victor
receives (S, r) = (47, 62).The public parameters that Victor has available are
as
follows: z = 17n = 79 (order of G)G = (2,22) Base PointQ = (52,7) Public Key
of all, Victor has to check the following: 1≤ (47, 62) ≤ (79-1) In fact, here
we go – the signature passes the first check.Victor now calculates (w), the
inverse of the digital signature (S): w ≡ S^(-1) (mod n) That, as we have
already seen on several occasions, means to perform the inverse functions of
S (mod
n): Reduce[(S)*x == 1, x, Modulus -> (n)]= Reduce[(47)*x == 1, x, Modulus -> (79)]= 37w = 37

Victor calculates
(U): U ≡ z * w (mod n)U ≡ 17 * 37 (mod 79)U = 76 Now Victor is able
to verify the signature: V ≡ r * w (mod n)V ≡ 62 * 37 (mod 79)V = 3 The
game is not finished yet; we have to convert through scalar multiplication the
coordinates of V = 3 on secp256k1.To do that, we have to perform the
following equation: R(x,y) = U*G + V*Q We will split the preceding
equation into two parts: (UG) and (VQ). We start by calculating
UG: U*G = 76G = 2*38G = 2*(2*19G) = 2*(2(G +18G) = 2*(2 (G + 2(9G)))
order to reduce 76G through scalar multiplication, we have to perform six-
point double (G) operations and two-point additions.This shortcut will come
in handy when the numbers are very large. There is no efficient algorithm
able to perform such an operation of reduction like this, so we have to use our
brain.We already know the results of 2G = 2 (2,22) = (52,7), so we can
reformulate the preceding operations, 2*(52,7) = (21, 42), already calculated
by me, and we arrive at this further
reduction: UG = 2 *((52,7) + 2((2,22) + (21,42))) = 2 *((52,7) + 2(13,44)))
the next step, we have to calculate VQ = 3Q = Q+ 2Q. One method to
perform this scalar multiplication is first to calculate 2Q = 2 *(52,7) =
(25,17).Then we proceed to compute Q + 2Q = (52,7) +
(25,17): VQ = (52,7) + (25,17) = (11,20)VQ = (11,20) Finally, we can
add UG + VQ in a unique adding
point: R (x,y) = U*G + V*QR (x,y) = (62,4) + (11,20)R (x,y) = (62,63)
the last verification, Victor can check the following: r ≡ Rx (mod n) In
fact, it turns out as follows: r = 62 = Rx = 62 (mod 79) So, finally Victor
accepts the signature!We have seen how complex it is even if we use small
numbers to delve inside this protocol, as we have demonstrated in this
example. So, you can imagine the enormous complexity that must be
involved if the parameters are 256 bits or more. This elliptic curve is
proposed to protect the ownership of Bitcoin. The signer, through their
signature (S), can demonstrate they own the [B] value corresponding to the
computed hash (z). It's verified that secp256k1 is a particular elliptic curve,
as we saw at the beginning of this section when I mentioned the
characteristics of this curve, which, being different from others, is more
efficient and has parameters chosen in a particular way to be implemented.If
you are curious about the implementation and the digital signature ECDSA
algorithm, you can visit the NIST web page and the Institute of Electrical
and Electronics Engineers (IEEE). NIST has published a list of different

kinds of ECC and the recommended parameters of the relative
implementations. You can find the document at this link:
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-78-
4.pdf.IEEE is a private organization dedicated to promoting publications,
conferences, and standards. This organization released the IEEE P1363-2000
(Standards Specification for Public-Key Cryptography), where it is possible
to find the specifications to implement the ECC.In the next section, you will
find an attack against EDCSA private keys made by a hacker group calling
itself fail0verflow, which announced it had recovered the secret keys used by
Sony to sign in to the PlayStation 3. However, this attack worked because
Sony didn't properly implement ECDSA, using a static private key instead of
a random one.

Attacks on EDCSA and the security of elliptic
curves
This attack on ECDSA can recover the private key, [d], if the random key
(ephemeral key), [k], is not completely random or it is used multiple times
for signing the hash of the message (z).This attack, implemented to extract
the signing key used for the PlayStation 3 gaming console in 2010, recovered
the keys of more than 77 million accounts.To better understand this
disruptive attack (because it will recover not only the message but also the
private key, [d]), we will divide it into two steps. In this example, we
consider the case when two messages, [M] and [M1], are digitally signed
using the same private keys, [k] and [d].

Step 1 – Discovering the random key, [k]

The signature (S = 47) generated at the time (t0) from the hash of the
message, [M], as we know, is given by the following mathematical
passages: S ≡ (z + r*d)/k (mod p) Here it is presented in
numbers: S ≡ (17 + 62 * 2)/3 (mod 67) = 47S = 47 Suppose now we
know z1 = 23 (the hash of the second message, [M1]) transmitted at the time
(t1) and generating the signature (S1). Moreover, we are supposed to know
the second signature (S1) given by the
equation: S1 ≡ (z1 + r*d)/k (mod p) Using the Reduce function of

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-78-4.pdf

Mathematica, we have the following result for (S1):
[k*x = (z1 + r*d), x, Modulus -> (n)] = 49 S1 = 49 Given (S –
S1)/(z-z1) ≡ k (mod n).Substituting the parameters in the preceding equation
with the numbers of our example, we can easily gain [k] using the Reduce
modular function of Mathematica, as
follows: Reduce[(47 - 49)*x == (17 - 23), x, Modulus -> (79)]k=3 After
we get [k], we can also gain the private key, [d]. Let's see what happens in
the next step.

Step 2 – Recovering the private key, [d]

After we have recovered the random key, [k], we can easily compute the
private key, [d]. We know that (S) is given by the following
equation: S = (z + r*d)/k Switching (k) from denominator to enumerator
at the left side, we can write the equation in the following
form: S*k = z + r*d From knowing (k) = 3, we can find [d] because also
all the other parameters (S,z,r) are public.So, we can find [d] by writing the
previous equation as follows: d = (S*k –z)/r All the parameters on the
right side are known.We can write it out in numbers, as
follows: (47 * 3 – 17)/r = 2 That is the number of the private key, [d]=
2, discovered!Analyzing this attack, we come to a question: what happens if
someone can find a method to generate multiple signatures (S1, S2, and Sn)
starting from (z1, z2, and zn) or generate multiple signatures starting from
(z)?In other words, as (z) comes from the hash of the message (the value of
Bitcoin recovered in a wallet) that we have called [B], what happens if we
can generate an S1 signature starting from (z)?I invite you to think about this
question because if that is possible, then it should be possible to generate
multiple signatures on a single transaction, all verified by the receivers. Let's
now see a brief analysis of ECC's computational power compared to other
encryptions. Elliptic curve efficiency compared with the classic
public/private key cryptography algorithm is shown in the following table.
You can immediately perceive the lowest key size used in elliptic curves
compared to the RSA/DSA algorithms. The equivalence you see in the
following figure also takes into consideration the symmetric scheme key size
(Advanced Encryption Standard (AES), for example). This scheme is
undoubtedly shorter than the elliptic curve, but here is a comparison because,
as you already know, the elliptic curve is able to spread out digital signatures

differently by symmetric scheme encryption, so the effective comparison has
to be done with asymmetric encryption:

Figure 7.9 – William Stallings' table of comparison – ECC versus classical
cryptography

As you can see, 256-bit encryption performed on ECC is equivalent to a
3,072-bit key on RSA. Moreover, we can compare a 512-bit key on elliptic
curve to a key size on RSA of 15,360 bits. Compared with symmetric
encryption (AES, for example), ECC needs double the amount of bits.

Important Note

A warning regarding the key's length: it doesn't matter how long
the modulus is or how big the key size is – if an algorithm logically
breaks out, nothing will repair its defeat.

Considerations about the future of ECC
Now that we have seen how a practical attack on ECDSA works, one of the
most interesting questions we should ask for the future is the following: Is
elliptic curve cryptography resistant to classical and quantum attacks?At a

glance, the answer could be that most elliptic curves are not vulnerable (if
well implemented) to most traditional attacks, except for the same ones we
find against the classic discrete logarithm (such as Pollard Rho or a birthday
attack) and man-in-the-middle attacks in D–H ECC. In the quantum case,
however, Shor's algorithm can probably solve the elliptic curve problem, as
we will see in the next chapter, dedicated to quantum cryptography.Thus, if
someone asks: are my Bitcoins secured for the next 10 or 20 years? We can
answer: under determinate conditions, yes, but if the beginning of the
quantum-computing era generates enough qubits to break the classical
discrete logarithm problem, it will probably break the ECC discrete logarithm
problem in polynomial time too. So, I agree with Jeremy Wohlwend (a Ph.D.
candidate at MIT), who wrote about Elliptic Curve Cryptography: Pre and
Post Quantum:"Sadly, the day that quantum computers can work with a
practical number of qubits will mark the end of ECC as we know it."

Summary
In this chapter, we have analyzed some of the most used elliptic curves. We
have seen what an elliptic curve is and how it is designed to be used in
cryptography. ECC has algorithms and protocols designed mainly to cover
secrets related to public/private encryption systems, such as the D–H key
exchange and the digital signature. In particular, we analyzed the discrete
logarithm problem transposed into ECC, so we have familiarized ourselves
with the operations at the core of ECC, such as adding points on the curve
and scalar multiplications.These kinds of operations are quite different from
the addition and multiplication we are familiar with; here, indeed, lies the
strength of elliptic curves.After the experimentation done on D–H ECC, we
analyzed in detail secp256k1, which is the elliptic curve used to implement
digital signatures on Bitcoin protocol through the ECDSA.So, now that you
have learned about elliptic curves and systems as alternative methods in
public/private encryption, you can understand that one of the best properties
of these curves is the grade of efficiency in their implementation, which can
be a lower key size.At the end of this chapter, we asked a question about
ECC's robustness regarding quantum attacks. It was with this answer that I
introduced the topic of Chapter 8, Quantum Cryptography. This chapter will,
for sure, cover one of the most intriguing and bizarre topics of this book.
Quantum computing and quantum cryptography will be the new challenge for

cryptography's future.

	Cryptography Algorithms, Second Edition: Build new algorithms in encryption, blockchain, quantum, zero-knowledge, and homomorphic algorithms
	1 Deep Dive into Cryptography
	Join our book community on Discord
	An introduction to cryptography
	Binary numbers, ASCII code, and notations
	Fermat's Last Theorem, prime numbers, and modular mathematics

	A brief history and a panoramic overview of cryptographic algorithms
	Rosetta Stone
	Caesar Cipher
	ROT13
	The Beale cipher
	The Vernam cipher

	Notes on security and computation
	Summary

	2 Symmetric Encryption Algorithms
	Join our book community on Discord
	Notations and operations in Boolean logic
	DES algorithms
	Simple DES
	DES
	Triple DES
	DESX

	AES Rijndael
	Description of AES
	Attacks and vulnerabilities in AES

	Summary

	3 Asymmetric Encryption
	Join our book community on Discord
	Introduction to asymmetric encryption
	The pioneers

	The Diffie-Hellman algorithm
	The discrete logarithm
	Explaining the D-H algorithm
	Analyzing the algorithm
	Possible attacks and cryptanalysis on the D-H algorithm

	RSA
	Explaining RSA
	Analyzing RSA
	Conventional attacks on the algorithm
	The application of RSA to verify international treaties
	Unconventional attacks

	PGP
	The ElGamal algorithm
	Summary

	4 Hash Functions and Digital Signature
	Join our book community on Discord
	A basic explanation of hash functions
	Overview of the main hash algorithms
	Logic and notations to implement hash functions
	Explanation of the SHA-1 algorithm
	Notes and example on SHA-1

	Authentication and digital signatures
	RSA digital signatures
	Digital signatures with the ElGamal algorithm
	Blind signatures

	Summary

	5 Introduction to The “spooky math”. Zero-Knowledge Protocols. and Attacks
	Join our book community on Discord
	The main scenario of a ZKP – the digital cave
	Non-interactive ZKPs
	Schnorr's interactive ZKP
	An introduction to zk-SNARKs – spooky moon math
	How to use Zk-SNARKs in Zcash cryptocurrency in a nutshell
	One-round ZKP
	A new Algorithm proposed by the Author: ZK13 – a ZKP for authentication and key exchange

	Summary

	7 Elliptic Curves
	Join our book community on Discord
	An overview of elliptic curves
	Operations on elliptic curves
	Scalar multiplication

	Implementing the D-H algorithm on elliptic curves
	Elliptic curve secp256k1 – the Bitcoin digital signature
	Step 1 – Generating keys
	Step 2 – Performing the digital signature in secp256k1
	Step 3 – Verifying the digital signature

	A numerical exercise on a digital signature on secp256k1
	Attacks on EDCSA and the security of elliptic curves
	Step 1 – Discovering the random key, [k]
	Step 2 – Recovering the private key, [d]

	Considerations about the future of ECC
	Summary

